更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,92 @@
#!/usr/bin/env bash
set -xe
# UsageCUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${batch_size} ${fp_item} ${max_epoch} ${model_name}
python="python3.7"
# Parameter description
function _set_params(){
run_mode=${1:-"sp"} # sp|mp
batch_size=${2:-"2"}
fp_item=${3:-"fp32"} # fp32|fp16
max_epoch=${4:-"1"}
model_item=${5:-"model_item"}
run_log_path=${TRAIN_LOG_DIR:-$(pwd)}
# 添加日志解析需要的参数
base_batch_size=${batch_size}
mission_name="目标检测"
direction_id="0"
ips_unit="images/s"
skip_steps=10 # 解析日志有些模型前几个step耗时长需要跳过 (必填)
keyword="ips:" # 解析日志,筛选出数据所在行的关键字 (必填)
index="1"
model_name=${model_item}_bs${batch_size}_${fp_item}
device=${CUDA_VISIBLE_DEVICES//,/ }
arr=(${device})
num_gpu_devices=${#arr[*]}
log_file=${run_log_path}/${model_item}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
}
function _train(){
echo "Train on ${num_gpu_devices} GPUs"
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
# set runtime params
set_optimizer_lr_sp=" "
set_optimizer_lr_mp=" "
# parse model_item
case ${model_item} in
faster_rcnn) model_yml="benchmark/configs/faster_rcnn_r50_fpn_1x_coco.yml"
set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;;
fcos) model_yml="configs/fcos/fcos_r50_fpn_1x_coco.yml"
set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;;
deformable_detr) model_yml="configs/deformable_detr/deformable_detr_r50_1x_coco.yml" ;;
gfl) model_yml="configs/gfl/gfl_r50_fpn_1x_coco.yml"
set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;;
hrnet) model_yml="configs/keypoint/hrnet/hrnet_w32_256x192.yml" ;;
higherhrnet) model_yml="configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml" ;;
solov2) model_yml="configs/solov2/solov2_r50_fpn_1x_coco.yml" ;;
jde) model_yml="configs/mot/jde/jde_darknet53_30e_1088x608.yml" ;;
fairmot) model_yml="configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml" ;;
*) echo "Undefined model_item"; exit 1;
esac
set_batch_size="TrainReader.batch_size=${batch_size}"
set_max_epoch="epoch=${max_epoch}"
set_log_iter="log_iter=1"
if [ ${fp_item} = "fp16" ]; then
set_fp_item="--fp16"
else
set_fp_item=" "
fi
case ${run_mode} in
sp) train_cmd="${python} -u tools/train.py -c ${model_yml} ${set_fp_item} \
-o ${set_batch_size} ${set_max_epoch} ${set_log_iter} ${set_optimizer_lr_sp}" ;;
mp) rm -rf mylog
train_cmd="${python} -m paddle.distributed.launch --log_dir=./mylog \
--gpus=${CUDA_VISIBLE_DEVICES} tools/train.py -c ${model_yml} ${set_fp_item} \
-o ${set_batch_size} ${set_max_epoch} ${set_log_iter} ${set_optimizer_lr_mp}"
log_parse_file="mylog/workerlog.0" ;;
*) echo "choose run_mode(sp or mp)"; exit 1;
esac
timeout 15m ${train_cmd} > ${log_file} 2>&1
if [ $? -ne 0 ];then
echo -e "${train_cmd}, FAIL"
export job_fail_flag=1
else
echo -e "${train_cmd}, SUCCESS"
export job_fail_flag=0
fi
kill -9 `ps -ef|grep 'python'|awk '{print $2}'`
if [ $run_mode = "mp" -a -d mylog ]; then
rm ${log_file}
cp mylog/workerlog.0 ${log_file}
fi
}
source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在联调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开
_set_params $@
# _train # 如果只想产出训练log,不解析,可取消注释
_run # 该函数在run_model.sh中,执行时会调用_train; 如果不联调只想要产出训练log可以注掉本行,提交时需打开