更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,28 @@
# Cascade R-CNN: High Quality Object Detection and Instance Segmentation
## Model Zoo
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | Mask AP | 下载 | 配置文件 |
| :------------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----: | :-----------------------------------------------------: | :-----: |
| ResNet50-FPN | Cascade Faster | 1 | 1x | ---- | 41.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.yml) |
| ResNet50-FPN | Cascade Mask | 1 | 1x | ---- | 41.8 | 36.3 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 1x | ---- | 44.4 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 2x | ---- | 45.0 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 1x | ---- | 44.9 | 39.1 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 2x | ---- | 45.7 | 39.7 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
## Citations
```
@article{Cai_2019,
title={Cascade R-CNN: High Quality Object Detection and Instance Segmentation},
ISSN={1939-3539},
url={http://dx.doi.org/10.1109/tpami.2019.2956516},
DOI={10.1109/tpami.2019.2956516},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Cai, Zhaowei and Vasconcelos, Nuno},
year={2019},
pages={11}
}
```

View File

@@ -0,0 +1,40 @@
worker_num: 2
TrainReader:
sample_transforms:
- Decode: {}
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], interp: 2, keep_ratio: True}
- RandomFlip: {prob: 0.5}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: true
drop_last: true
collate_batch: false
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: false
drop_last: false
TestReader:
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: false
drop_last: false

View File

@@ -0,0 +1,40 @@
worker_num: 2
TrainReader:
sample_transforms:
- Decode: {}
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], interp: 2, keep_ratio: True}
- RandomFlip: {prob: 0.5}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: true
drop_last: true
collate_batch: false
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: false
drop_last: false
TestReader:
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: false
drop_last: false

View File

@@ -0,0 +1,97 @@
architecture: CascadeRCNN
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
CascadeRCNN:
backbone: ResNet
neck: FPN
rpn_head: RPNHead
bbox_head: CascadeHead
mask_head: MaskHead
# post process
bbox_post_process: BBoxPostProcess
mask_post_process: MaskPostProcess
ResNet:
# index 0 stands for res2
depth: 50
norm_type: bn
freeze_at: 0
return_idx: [0,1,2,3]
num_stages: 4
FPN:
out_channel: 256
RPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
anchor_sizes: [[32], [64], [128], [256], [512]]
strides: [4, 8, 16, 32, 64]
rpn_target_assign:
batch_size_per_im: 256
fg_fraction: 0.5
negative_overlap: 0.3
positive_overlap: 0.7
use_random: True
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
topk_after_collect: True
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
CascadeHead:
head: CascadeTwoFCHead
roi_extractor:
resolution: 7
sampling_ratio: 0
aligned: True
bbox_assigner: BBoxAssigner
BBoxAssigner:
batch_size_per_im: 512
bg_thresh: 0.5
fg_thresh: 0.5
fg_fraction: 0.25
cascade_iou: [0.5, 0.6, 0.7]
use_random: True
CascadeTwoFCHead:
out_channel: 1024
BBoxPostProcess:
decode:
name: RCNNBox
prior_box_var: [30.0, 30.0, 15.0, 15.0]
nms:
name: MultiClassNMS
keep_top_k: 100
score_threshold: 0.05
nms_threshold: 0.5
MaskHead:
head: MaskFeat
roi_extractor:
resolution: 14
sampling_ratio: 0
aligned: True
mask_assigner: MaskAssigner
share_bbox_feat: False
MaskFeat:
num_convs: 4
out_channel: 256
MaskAssigner:
mask_resolution: 28
MaskPostProcess:
binary_thresh: 0.5

View File

@@ -0,0 +1,75 @@
architecture: CascadeRCNN
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
CascadeRCNN:
backbone: ResNet
neck: FPN
rpn_head: RPNHead
bbox_head: CascadeHead
# post process
bbox_post_process: BBoxPostProcess
ResNet:
# index 0 stands for res2
depth: 50
norm_type: bn
freeze_at: 0
return_idx: [0,1,2,3]
num_stages: 4
FPN:
out_channel: 256
RPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
anchor_sizes: [[32], [64], [128], [256], [512]]
strides: [4, 8, 16, 32, 64]
rpn_target_assign:
batch_size_per_im: 256
fg_fraction: 0.5
negative_overlap: 0.3
positive_overlap: 0.7
use_random: True
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
topk_after_collect: True
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
CascadeHead:
head: CascadeTwoFCHead
roi_extractor:
resolution: 7
sampling_ratio: 0
aligned: True
bbox_assigner: BBoxAssigner
BBoxAssigner:
batch_size_per_im: 512
bg_thresh: 0.5
fg_thresh: 0.5
fg_fraction: 0.25
cascade_iou: [0.5, 0.6, 0.7]
use_random: True
CascadeTwoFCHead:
out_channel: 1024
BBoxPostProcess:
decode:
name: RCNNBox
prior_box_var: [30.0, 30.0, 15.0, 15.0]
nms:
name: MultiClassNMS
keep_top_k: 100
score_threshold: 0.05
nms_threshold: 0.5

View File

@@ -0,0 +1,19 @@
epoch: 12
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [8, 11]
- !LinearWarmup
start_factor: 0.001
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2

View File

@@ -0,0 +1,8 @@
_BASE_: [
'../datasets/coco_instance.yml',
'../runtime.yml',
'_base_/optimizer_1x.yml',
'_base_/cascade_mask_rcnn_r50_fpn.yml',
'_base_/cascade_mask_fpn_reader.yml',
]
weights: output/cascade_mask_rcnn_r50_fpn_1x_coco/model_final

View File

@@ -0,0 +1,18 @@
_BASE_: [
'../datasets/coco_instance.yml',
'../runtime.yml',
'_base_/optimizer_1x.yml',
'_base_/cascade_mask_rcnn_r50_fpn.yml',
'_base_/cascade_mask_fpn_reader.yml',
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
weights: output/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco/model_final
ResNet:
depth: 50
variant: d
norm_type: bn
freeze_at: 0
return_idx: [0,1,2,3]
num_stages: 4
lr_mult_list: [0.05, 0.05, 0.1, 0.15]

View File

@@ -0,0 +1,29 @@
_BASE_: [
'../datasets/coco_instance.yml',
'../runtime.yml',
'_base_/optimizer_1x.yml',
'_base_/cascade_mask_rcnn_r50_fpn.yml',
'_base_/cascade_mask_fpn_reader.yml',
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
weights: output/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco/model_final
ResNet:
depth: 50
variant: d
norm_type: bn
freeze_at: 0
return_idx: [0,1,2,3]
num_stages: 4
lr_mult_list: [0.05, 0.05, 0.1, 0.15]
epoch: 24
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [12, 22]
- !LinearWarmup
start_factor: 0.1
steps: 1000

View File

@@ -0,0 +1,8 @@
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/optimizer_1x.yml',
'_base_/cascade_rcnn_r50_fpn.yml',
'_base_/cascade_fpn_reader.yml',
]
weights: output/cascade_rcnn_r50_fpn_1x_coco/model_final

View File

@@ -0,0 +1,18 @@
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/optimizer_1x.yml',
'_base_/cascade_rcnn_r50_fpn.yml',
'_base_/cascade_fpn_reader.yml',
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
weights: output/cascade_rcnn_r50_vd_fpn_ssld_1x_coco/model_final
ResNet:
depth: 50
variant: d
norm_type: bn
freeze_at: 0
return_idx: [0,1,2,3]
num_stages: 4
lr_mult_list: [0.05, 0.05, 0.1, 0.15]

View File

@@ -0,0 +1,29 @@
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/optimizer_1x.yml',
'_base_/cascade_rcnn_r50_fpn.yml',
'_base_/cascade_fpn_reader.yml',
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
weights: output/cascade_rcnn_r50_vd_fpn_ssld_2x_coco/model_final
ResNet:
depth: 50
variant: d
norm_type: bn
freeze_at: 0
return_idx: [0,1,2,3]
num_stages: 4
lr_mult_list: [0.05, 0.05, 0.1, 0.15]
epoch: 24
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [12, 22]
- !LinearWarmup
start_factor: 0.1
steps: 1000