更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,37 @@
English | [简体中文](README_cn.md)
# CenterNet (CenterNet: Objects as Points)
## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model_Zoo)
- [Citations](#Citations)
## Introduction
[CenterNet](http://arxiv.org/abs/1904.07850) is an Anchor Free detector, which model an object as a single point -- the center point of its bounding box. The detector uses keypoint estimation to find center points and regresses to all other object properties. The center point based approach, CenterNet, is end-to-end differentiable, simpler, faster, and more accurate than corresponding bounding box based detectors.
## Model Zoo
### CenterNet Results on COCO-val 2017
| backbone | input shape | mAP | FPS | download | config |
| :--------------| :------- | :----: | :------: | :----: |:-----: |
| DLA-34(paper) | 512x512 | 37.4 | - | - | - |
| DLA-34 | 512x512 | 37.6 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_dla34_140e_coco.pdparams) | [config](./centernet_dla34_140e_coco.yml) |
| ResNet50 + DLAUp | 512x512 | 38.9 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_r50_140e_coco.pdparams) | [config](./centernet_r50_140e_coco.yml) |
| MobileNetV1 + DLAUp | 512x512 | 28.2 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv1_140e_coco.pdparams) | [config](./centernet_mbv1_140e_coco.yml) |
| MobileNetV3_small + DLAUp | 512x512 | 17 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_small_140e_coco.pdparams) | [config](./centernet_mbv3_small_140e_coco.yml) |
| MobileNetV3_large + DLAUp | 512x512 | 27.1 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_large_140e_coco.pdparams) | [config](./centernet_mbv3_large_140e_coco.yml) |
| ShuffleNetV2 + DLAUp | 512x512 | 23.8 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_shufflenetv2_140e_coco.pdparams) | [config](./centernet_shufflenetv2_140e_coco.yml) |
## Citations
```
@article{zhou2019objects,
title={Objects as points},
author={Zhou, Xingyi and Wang, Dequan and Kr{\"a}henb{\"u}hl, Philipp},
journal={arXiv preprint arXiv:1904.07850},
year={2019}
}
```

View File

@@ -0,0 +1,36 @@
简体中文 | [English](README.md)
# CenterNet (CenterNet: Objects as Points)
## 内容
- [简介](#简介)
- [模型库](#模型库)
- [引用](#引用)
## 内容
[CenterNet](http://arxiv.org/abs/1904.07850)是Anchor Free检测器将物体表示为一个目标框中心点。CenterNet使用关键点检测的方式定位中心点并回归物体的其他属性。CenterNet是以中心点为基础的检测方法是端到端可训练的并且相较于基于anchor的检测器更加检测高效。
## 模型库
### CenterNet在COCO-val 2017上结果
| 骨干网络 | 输入尺寸 | mAP | FPS | 下载链接 | 配置文件 |
| :--------------| :------- | :----: | :------: | :----: |:-----: |
| DLA-34(paper) | 512x512 | 37.4 | - | - | - |
| DLA-34 | 512x512 | 37.6 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_dla34_140e_coco.pdparams) | [配置文件](./centernet_dla34_140e_coco.yml) |
| ResNet50 + DLAUp | 512x512 | 38.9 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_r50_140e_coco.pdparams) | [配置文件](./centernet_r50_140e_coco.yml) |
| MobileNetV1 + DLAUp | 512x512 | 28.2 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv1_140e_coco.pdparams) | [配置文件](./centernet_mbv1_140e_coco.yml) |
| MobileNetV3_small + DLAUp | 512x512 | 17 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_small_140e_coco.pdparams) | [配置文件](./centernet_mbv3_small_140e_coco.yml) |
| MobileNetV3_large + DLAUp | 512x512 | 27.1 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_large_140e_coco.pdparams) | [配置文件](./centernet_mbv3_large_140e_coco.yml) |
| ShuffleNetV2 + DLAUp | 512x512 | 23.8 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_shufflenetv2_140e_coco.pdparams) | [配置文件](./centernet_shufflenetv2_140e_coco.yml) |
## 引用
```
@article{zhou2019objects,
title={Objects as points},
author={Zhou, Xingyi and Wang, Dequan and Kr{\"a}henb{\"u}hl, Philipp},
journal={arXiv preprint arXiv:1904.07850},
year={2019}
}
```

View File

@@ -0,0 +1,22 @@
architecture: CenterNet
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/DLA34_pretrain.pdparams
CenterNet:
backbone: DLA
neck: CenterNetDLAFPN
head: CenterNetHead
post_process: CenterNetPostProcess
DLA:
depth: 34
CenterNetDLAFPN:
down_ratio: 4
CenterNetHead:
head_planes: 256
regress_ltrb: False
CenterNetPostProcess:
max_per_img: 100
regress_ltrb: False

View File

@@ -0,0 +1,34 @@
architecture: CenterNet
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams
norm_type: sync_bn
use_ema: true
ema_decay: 0.9998
CenterNet:
backbone: ResNet
neck: CenterNetDLAFPN
head: CenterNetHead
post_process: CenterNetPostProcess
ResNet:
depth: 50
variant: d
return_idx: [0, 1, 2, 3]
freeze_at: -1
norm_decay: 0.
dcn_v2_stages: [3]
CenterNetDLAFPN:
first_level: 0
last_level: 4
down_ratio: 4
dcn_v2: False
CenterNetHead:
head_planes: 256
regress_ltrb: False
CenterNetPostProcess:
max_per_img: 100
regress_ltrb: False

View File

@@ -0,0 +1,35 @@
worker_num: 4
TrainReader:
inputs_def:
image_shape: [3, 512, 512]
sample_transforms:
- Decode: {}
- FlipWarpAffine: {keep_res: False, input_h: 512, input_w: 512, use_random: True}
- CenterRandColor: {}
- Lighting: {eigval: [0.2141788, 0.01817699, 0.00341571], eigvec: [[-0.58752847, -0.69563484, 0.41340352], [-0.5832747, 0.00994535, -0.81221408], [-0.56089297, 0.71832671, 0.41158938]]}
- NormalizeImage: {mean: [0.40789655, 0.44719303, 0.47026116], std: [0.2886383 , 0.27408165, 0.27809834], is_scale: False}
- Permute: {}
- Gt2CenterNetTarget: {down_ratio: 4, max_objs: 128}
batch_size: 16
shuffle: True
drop_last: True
use_shared_memory: True
EvalReader:
sample_transforms:
- Decode: {}
- WarpAffine: {keep_res: True, input_h: 512, input_w: 512}
- NormalizeImage: {mean: [0.40789655, 0.44719303, 0.47026116], std: [0.2886383 , 0.27408165, 0.27809834]}
- Permute: {}
batch_size: 1
TestReader:
inputs_def:
image_shape: [3, 512, 512]
sample_transforms:
- Decode: {}
- WarpAffine: {keep_res: True, input_h: 512, input_w: 512}
- NormalizeImage: {mean: [0.40789655, 0.44719303, 0.47026116], std: [0.2886383 , 0.27408165, 0.27809834], is_scale: True}
- Permute: {}
batch_size: 1

View File

@@ -0,0 +1,14 @@
epoch: 140
LearningRate:
base_lr: 0.0005
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [90, 120]
use_warmup: False
OptimizerBuilder:
optimizer:
type: Adam
regularizer: NULL

View File

@@ -0,0 +1,9 @@
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/optimizer_140e.yml',
'_base_/centernet_dla34.yml',
'_base_/centernet_reader.yml',
]
weights: output/centernet_dla34_140e_coco/model_final

View File

@@ -0,0 +1,21 @@
_BASE_: [
'centernet_r50_140e_coco.yml'
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV1_pretrained.pdparams
weights: output/centernet_mbv1_140e_coco/model_final
CenterNet:
backbone: MobileNet
neck: CenterNetDLAFPN
head: CenterNetHead
post_process: CenterNetPostProcess
MobileNet:
scale: 1.
with_extra_blocks: false
extra_block_filters: []
feature_maps: [3, 5, 11, 13]
TrainReader:
batch_size: 32

View File

@@ -0,0 +1,22 @@
_BASE_: [
'centernet_r50_140e_coco.yml'
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
weights: output/centernet_mbv3_large_140e_coco/model_final
CenterNet:
backbone: MobileNetV3
neck: CenterNetDLAFPN
head: CenterNetHead
post_process: CenterNetPostProcess
MobileNetV3:
model_name: large
scale: 1.
with_extra_blocks: false
extra_block_filters: []
feature_maps: [4, 7, 13, 16]
TrainReader:
batch_size: 32

View File

@@ -0,0 +1,28 @@
_BASE_: [
'centernet_r50_140e_coco.yml'
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
weights: output/centernet_mbv3_small_140e_coco/model_final
CenterNet:
backbone: MobileNetV3
neck: CenterNetDLAFPN
head: CenterNetHead
post_process: CenterNetPostProcess
MobileNetV3:
model_name: small
scale: 1.
with_extra_blocks: false
extra_block_filters: []
feature_maps: [4, 9, 12]
CenterNetDLAFPN:
first_level: 0
last_level: 3
down_ratio: 8
dcn_v2: False
TrainReader:
batch_size: 32

View File

@@ -0,0 +1,9 @@
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/optimizer_140e.yml',
'_base_/centernet_r50.yml',
'_base_/centernet_reader.yml',
]
weights: output/centernet_r50_140e_coco/model_final

View File

@@ -0,0 +1,33 @@
_BASE_: [
'centernet_r50_140e_coco.yml'
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ShuffleNetV2_x1_0_pretrained.pdparams
weights: output/centernet_shufflenetv2_140e_coco/model_final
CenterNet:
backbone: ShuffleNetV2
neck: CenterNetDLAFPN
head: CenterNetHead
post_process: CenterNetPostProcess
ShuffleNetV2:
scale: 1.0
feature_maps: [5, 13, 17]
act: leaky_relu
CenterNetDLAFPN:
first_level: 0
last_level: 3
down_ratio: 8
dcn_v2: False
TrainReader:
batch_size: 32
TestReader:
sample_transforms:
- Decode: {}
- WarpAffine: {keep_res: False, input_h: 512, input_w: 512}
- NormalizeImage: {mean: [0.40789655, 0.44719303, 0.47026116], std: [0.2886383 , 0.27408165, 0.27809834]}
- Permute: {}