更换文档检测模型
This commit is contained in:
37
paddle_detection/configs/centernet/README.md
Normal file
37
paddle_detection/configs/centernet/README.md
Normal file
@@ -0,0 +1,37 @@
|
||||
English | [简体中文](README_cn.md)
|
||||
|
||||
# CenterNet (CenterNet: Objects as Points)
|
||||
|
||||
## Table of Contents
|
||||
- [Introduction](#Introduction)
|
||||
- [Model Zoo](#Model_Zoo)
|
||||
- [Citations](#Citations)
|
||||
|
||||
## Introduction
|
||||
|
||||
[CenterNet](http://arxiv.org/abs/1904.07850) is an Anchor Free detector, which model an object as a single point -- the center point of its bounding box. The detector uses keypoint estimation to find center points and regresses to all other object properties. The center point based approach, CenterNet, is end-to-end differentiable, simpler, faster, and more accurate than corresponding bounding box based detectors.
|
||||
|
||||
## Model Zoo
|
||||
|
||||
### CenterNet Results on COCO-val 2017
|
||||
|
||||
| backbone | input shape | mAP | FPS | download | config |
|
||||
| :--------------| :------- | :----: | :------: | :----: |:-----: |
|
||||
| DLA-34(paper) | 512x512 | 37.4 | - | - | - |
|
||||
| DLA-34 | 512x512 | 37.6 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_dla34_140e_coco.pdparams) | [config](./centernet_dla34_140e_coco.yml) |
|
||||
| ResNet50 + DLAUp | 512x512 | 38.9 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_r50_140e_coco.pdparams) | [config](./centernet_r50_140e_coco.yml) |
|
||||
| MobileNetV1 + DLAUp | 512x512 | 28.2 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv1_140e_coco.pdparams) | [config](./centernet_mbv1_140e_coco.yml) |
|
||||
| MobileNetV3_small + DLAUp | 512x512 | 17 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_small_140e_coco.pdparams) | [config](./centernet_mbv3_small_140e_coco.yml) |
|
||||
| MobileNetV3_large + DLAUp | 512x512 | 27.1 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_large_140e_coco.pdparams) | [config](./centernet_mbv3_large_140e_coco.yml) |
|
||||
| ShuffleNetV2 + DLAUp | 512x512 | 23.8 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_shufflenetv2_140e_coco.pdparams) | [config](./centernet_shufflenetv2_140e_coco.yml) |
|
||||
|
||||
|
||||
## Citations
|
||||
```
|
||||
@article{zhou2019objects,
|
||||
title={Objects as points},
|
||||
author={Zhou, Xingyi and Wang, Dequan and Kr{\"a}henb{\"u}hl, Philipp},
|
||||
journal={arXiv preprint arXiv:1904.07850},
|
||||
year={2019}
|
||||
}
|
||||
```
|
||||
36
paddle_detection/configs/centernet/README_cn.md
Normal file
36
paddle_detection/configs/centernet/README_cn.md
Normal file
@@ -0,0 +1,36 @@
|
||||
简体中文 | [English](README.md)
|
||||
|
||||
# CenterNet (CenterNet: Objects as Points)
|
||||
|
||||
## 内容
|
||||
- [简介](#简介)
|
||||
- [模型库](#模型库)
|
||||
- [引用](#引用)
|
||||
|
||||
## 内容
|
||||
|
||||
[CenterNet](http://arxiv.org/abs/1904.07850)是Anchor Free检测器,将物体表示为一个目标框中心点。CenterNet使用关键点检测的方式定位中心点并回归物体的其他属性。CenterNet是以中心点为基础的检测方法,是端到端可训练的,并且相较于基于anchor的检测器更加检测高效。
|
||||
|
||||
## 模型库
|
||||
|
||||
### CenterNet在COCO-val 2017上结果
|
||||
|
||||
| 骨干网络 | 输入尺寸 | mAP | FPS | 下载链接 | 配置文件 |
|
||||
| :--------------| :------- | :----: | :------: | :----: |:-----: |
|
||||
| DLA-34(paper) | 512x512 | 37.4 | - | - | - |
|
||||
| DLA-34 | 512x512 | 37.6 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_dla34_140e_coco.pdparams) | [配置文件](./centernet_dla34_140e_coco.yml) |
|
||||
| ResNet50 + DLAUp | 512x512 | 38.9 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_r50_140e_coco.pdparams) | [配置文件](./centernet_r50_140e_coco.yml) |
|
||||
| MobileNetV1 + DLAUp | 512x512 | 28.2 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv1_140e_coco.pdparams) | [配置文件](./centernet_mbv1_140e_coco.yml) |
|
||||
| MobileNetV3_small + DLAUp | 512x512 | 17 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_small_140e_coco.pdparams) | [配置文件](./centernet_mbv3_small_140e_coco.yml) |
|
||||
| MobileNetV3_large + DLAUp | 512x512 | 27.1 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_large_140e_coco.pdparams) | [配置文件](./centernet_mbv3_large_140e_coco.yml) |
|
||||
| ShuffleNetV2 + DLAUp | 512x512 | 23.8 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_shufflenetv2_140e_coco.pdparams) | [配置文件](./centernet_shufflenetv2_140e_coco.yml) |
|
||||
|
||||
## 引用
|
||||
```
|
||||
@article{zhou2019objects,
|
||||
title={Objects as points},
|
||||
author={Zhou, Xingyi and Wang, Dequan and Kr{\"a}henb{\"u}hl, Philipp},
|
||||
journal={arXiv preprint arXiv:1904.07850},
|
||||
year={2019}
|
||||
}
|
||||
```
|
||||
@@ -0,0 +1,22 @@
|
||||
architecture: CenterNet
|
||||
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/DLA34_pretrain.pdparams
|
||||
|
||||
CenterNet:
|
||||
backbone: DLA
|
||||
neck: CenterNetDLAFPN
|
||||
head: CenterNetHead
|
||||
post_process: CenterNetPostProcess
|
||||
|
||||
DLA:
|
||||
depth: 34
|
||||
|
||||
CenterNetDLAFPN:
|
||||
down_ratio: 4
|
||||
|
||||
CenterNetHead:
|
||||
head_planes: 256
|
||||
regress_ltrb: False
|
||||
|
||||
CenterNetPostProcess:
|
||||
max_per_img: 100
|
||||
regress_ltrb: False
|
||||
34
paddle_detection/configs/centernet/_base_/centernet_r50.yml
Normal file
34
paddle_detection/configs/centernet/_base_/centernet_r50.yml
Normal file
@@ -0,0 +1,34 @@
|
||||
architecture: CenterNet
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams
|
||||
norm_type: sync_bn
|
||||
use_ema: true
|
||||
ema_decay: 0.9998
|
||||
|
||||
CenterNet:
|
||||
backbone: ResNet
|
||||
neck: CenterNetDLAFPN
|
||||
head: CenterNetHead
|
||||
post_process: CenterNetPostProcess
|
||||
|
||||
ResNet:
|
||||
depth: 50
|
||||
variant: d
|
||||
return_idx: [0, 1, 2, 3]
|
||||
freeze_at: -1
|
||||
norm_decay: 0.
|
||||
dcn_v2_stages: [3]
|
||||
|
||||
|
||||
CenterNetDLAFPN:
|
||||
first_level: 0
|
||||
last_level: 4
|
||||
down_ratio: 4
|
||||
dcn_v2: False
|
||||
|
||||
CenterNetHead:
|
||||
head_planes: 256
|
||||
regress_ltrb: False
|
||||
|
||||
CenterNetPostProcess:
|
||||
max_per_img: 100
|
||||
regress_ltrb: False
|
||||
@@ -0,0 +1,35 @@
|
||||
worker_num: 4
|
||||
TrainReader:
|
||||
inputs_def:
|
||||
image_shape: [3, 512, 512]
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- FlipWarpAffine: {keep_res: False, input_h: 512, input_w: 512, use_random: True}
|
||||
- CenterRandColor: {}
|
||||
- Lighting: {eigval: [0.2141788, 0.01817699, 0.00341571], eigvec: [[-0.58752847, -0.69563484, 0.41340352], [-0.5832747, 0.00994535, -0.81221408], [-0.56089297, 0.71832671, 0.41158938]]}
|
||||
- NormalizeImage: {mean: [0.40789655, 0.44719303, 0.47026116], std: [0.2886383 , 0.27408165, 0.27809834], is_scale: False}
|
||||
- Permute: {}
|
||||
- Gt2CenterNetTarget: {down_ratio: 4, max_objs: 128}
|
||||
batch_size: 16
|
||||
shuffle: True
|
||||
drop_last: True
|
||||
use_shared_memory: True
|
||||
|
||||
EvalReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- WarpAffine: {keep_res: True, input_h: 512, input_w: 512}
|
||||
- NormalizeImage: {mean: [0.40789655, 0.44719303, 0.47026116], std: [0.2886383 , 0.27408165, 0.27809834]}
|
||||
- Permute: {}
|
||||
batch_size: 1
|
||||
|
||||
|
||||
TestReader:
|
||||
inputs_def:
|
||||
image_shape: [3, 512, 512]
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- WarpAffine: {keep_res: True, input_h: 512, input_w: 512}
|
||||
- NormalizeImage: {mean: [0.40789655, 0.44719303, 0.47026116], std: [0.2886383 , 0.27408165, 0.27809834], is_scale: True}
|
||||
- Permute: {}
|
||||
batch_size: 1
|
||||
14
paddle_detection/configs/centernet/_base_/optimizer_140e.yml
Normal file
14
paddle_detection/configs/centernet/_base_/optimizer_140e.yml
Normal file
@@ -0,0 +1,14 @@
|
||||
epoch: 140
|
||||
|
||||
LearningRate:
|
||||
base_lr: 0.0005
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [90, 120]
|
||||
use_warmup: False
|
||||
|
||||
OptimizerBuilder:
|
||||
optimizer:
|
||||
type: Adam
|
||||
regularizer: NULL
|
||||
@@ -0,0 +1,9 @@
|
||||
_BASE_: [
|
||||
'../datasets/coco_detection.yml',
|
||||
'../runtime.yml',
|
||||
'_base_/optimizer_140e.yml',
|
||||
'_base_/centernet_dla34.yml',
|
||||
'_base_/centernet_reader.yml',
|
||||
]
|
||||
|
||||
weights: output/centernet_dla34_140e_coco/model_final
|
||||
@@ -0,0 +1,21 @@
|
||||
_BASE_: [
|
||||
'centernet_r50_140e_coco.yml'
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV1_pretrained.pdparams
|
||||
weights: output/centernet_mbv1_140e_coco/model_final
|
||||
|
||||
CenterNet:
|
||||
backbone: MobileNet
|
||||
neck: CenterNetDLAFPN
|
||||
head: CenterNetHead
|
||||
post_process: CenterNetPostProcess
|
||||
|
||||
MobileNet:
|
||||
scale: 1.
|
||||
with_extra_blocks: false
|
||||
extra_block_filters: []
|
||||
feature_maps: [3, 5, 11, 13]
|
||||
|
||||
TrainReader:
|
||||
batch_size: 32
|
||||
@@ -0,0 +1,22 @@
|
||||
_BASE_: [
|
||||
'centernet_r50_140e_coco.yml'
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
|
||||
weights: output/centernet_mbv3_large_140e_coco/model_final
|
||||
|
||||
CenterNet:
|
||||
backbone: MobileNetV3
|
||||
neck: CenterNetDLAFPN
|
||||
head: CenterNetHead
|
||||
post_process: CenterNetPostProcess
|
||||
|
||||
MobileNetV3:
|
||||
model_name: large
|
||||
scale: 1.
|
||||
with_extra_blocks: false
|
||||
extra_block_filters: []
|
||||
feature_maps: [4, 7, 13, 16]
|
||||
|
||||
TrainReader:
|
||||
batch_size: 32
|
||||
@@ -0,0 +1,28 @@
|
||||
_BASE_: [
|
||||
'centernet_r50_140e_coco.yml'
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
|
||||
weights: output/centernet_mbv3_small_140e_coco/model_final
|
||||
|
||||
CenterNet:
|
||||
backbone: MobileNetV3
|
||||
neck: CenterNetDLAFPN
|
||||
head: CenterNetHead
|
||||
post_process: CenterNetPostProcess
|
||||
|
||||
MobileNetV3:
|
||||
model_name: small
|
||||
scale: 1.
|
||||
with_extra_blocks: false
|
||||
extra_block_filters: []
|
||||
feature_maps: [4, 9, 12]
|
||||
|
||||
CenterNetDLAFPN:
|
||||
first_level: 0
|
||||
last_level: 3
|
||||
down_ratio: 8
|
||||
dcn_v2: False
|
||||
|
||||
TrainReader:
|
||||
batch_size: 32
|
||||
@@ -0,0 +1,9 @@
|
||||
_BASE_: [
|
||||
'../datasets/coco_detection.yml',
|
||||
'../runtime.yml',
|
||||
'_base_/optimizer_140e.yml',
|
||||
'_base_/centernet_r50.yml',
|
||||
'_base_/centernet_reader.yml',
|
||||
]
|
||||
|
||||
weights: output/centernet_r50_140e_coco/model_final
|
||||
@@ -0,0 +1,33 @@
|
||||
_BASE_: [
|
||||
'centernet_r50_140e_coco.yml'
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ShuffleNetV2_x1_0_pretrained.pdparams
|
||||
weights: output/centernet_shufflenetv2_140e_coco/model_final
|
||||
|
||||
CenterNet:
|
||||
backbone: ShuffleNetV2
|
||||
neck: CenterNetDLAFPN
|
||||
head: CenterNetHead
|
||||
post_process: CenterNetPostProcess
|
||||
|
||||
ShuffleNetV2:
|
||||
scale: 1.0
|
||||
feature_maps: [5, 13, 17]
|
||||
act: leaky_relu
|
||||
|
||||
CenterNetDLAFPN:
|
||||
first_level: 0
|
||||
last_level: 3
|
||||
down_ratio: 8
|
||||
dcn_v2: False
|
||||
|
||||
TrainReader:
|
||||
batch_size: 32
|
||||
|
||||
TestReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- WarpAffine: {keep_res: False, input_h: 512, input_w: 512}
|
||||
- NormalizeImage: {mean: [0.40789655, 0.44719303, 0.47026116], std: [0.2886383 , 0.27408165, 0.27809834]}
|
||||
- Permute: {}
|
||||
Reference in New Issue
Block a user