更换文档检测模型
This commit is contained in:
176
paddle_detection/configs/face_detection/README.md
Normal file
176
paddle_detection/configs/face_detection/README.md
Normal file
@@ -0,0 +1,176 @@
|
||||
# 人脸检测模型
|
||||
|
||||
## 简介
|
||||
`face_detection`中提供高效、高速的人脸检测解决方案,包括最先进的模型和经典模型。
|
||||
|
||||

|
||||
|
||||
## 模型库
|
||||
|
||||
#### WIDER-FACE数据集上的mAP
|
||||
|
||||
| 网络结构 | 输入尺寸 | 图片个数/GPU | 学习率策略 | Easy/Medium/Hard Set | 预测时延(SD855)| 模型大小(MB) | 下载 | 配置文件 |
|
||||
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|
|
||||
| BlazeFace | 640 | 8 | 1000e | 0.885 / 0.855 / 0.731 | - | 0.472 |[下载链接](https://paddledet.bj.bcebos.com/models/blazeface_1000e.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/face_detection/blazeface_1000e.yml) |
|
||||
| BlazeFace-FPN-SSH | 640 | 8 | 1000e | 0.907 / 0.883 / 0.793 | - | 0.479 |[下载链接](https://paddledet.bj.bcebos.com/models/blazeface_fpn_ssh_1000e.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/face_detection/blazeface_fpn_ssh_1000e.yml) |
|
||||
|
||||
**注意:**
|
||||
- 我们使用多尺度评估策略得到`Easy/Medium/Hard Set`里的mAP。具体细节请参考[在WIDER-FACE数据集上评估](#在WIDER-FACE数据集上评估)。
|
||||
|
||||
## 快速开始
|
||||
|
||||
### 数据准备
|
||||
我们使用[WIDER-FACE数据集](http://shuoyang1213.me/WIDERFACE/)进行训练和模型测试,官方网站提供了详细的数据介绍。
|
||||
- WIDER-Face数据源:
|
||||
使用如下目录结构加载`wider_face`类型的数据集:
|
||||
|
||||
```
|
||||
dataset/wider_face/
|
||||
├── wider_face_split
|
||||
│ ├── wider_face_train_bbx_gt.txt
|
||||
│ ├── wider_face_val_bbx_gt.txt
|
||||
├── WIDER_train
|
||||
│ ├── images
|
||||
│ │ ├── 0--Parade
|
||||
│ │ │ ├── 0_Parade_marchingband_1_100.jpg
|
||||
│ │ │ ├── 0_Parade_marchingband_1_381.jpg
|
||||
│ │ │ │ ...
|
||||
│ │ ├── 10--People_Marching
|
||||
│ │ │ ...
|
||||
├── WIDER_val
|
||||
│ ├── images
|
||||
│ │ ├── 0--Parade
|
||||
│ │ │ ├── 0_Parade_marchingband_1_1004.jpg
|
||||
│ │ │ ├── 0_Parade_marchingband_1_1045.jpg
|
||||
│ │ │ │ ...
|
||||
│ │ ├── 10--People_Marching
|
||||
│ │ │ ...
|
||||
```
|
||||
|
||||
- 手动下载数据集:
|
||||
要下载WIDER-FACE数据集,请运行以下命令:
|
||||
```
|
||||
cd dataset/wider_face && ./download_wider_face.sh
|
||||
```
|
||||
|
||||
### 参数配置
|
||||
基础模型的配置可以参考`configs/face_detection/_base_/blazeface.yml`;
|
||||
改进模型增加FPN和SSH的neck结构,配置文件可以参考`configs/face_detection/_base_/blazeface_fpn.yml`,可以根据需求配置FPN和SSH,具体如下:
|
||||
```yaml
|
||||
BlazeNet:
|
||||
blaze_filters: [[24, 24], [24, 24], [24, 48, 2], [48, 48], [48, 48]]
|
||||
double_blaze_filters: [[48, 24, 96, 2], [96, 24, 96], [96, 24, 96],
|
||||
[96, 24, 96, 2], [96, 24, 96], [96, 24, 96]]
|
||||
act: hard_swish #配置backbone中BlazeBlock的激活函数,基础模型为relu,增加FPN和SSH时需使用hard_swish
|
||||
|
||||
BlazeNeck:
|
||||
neck_type : fpn_ssh #可选only_fpn、only_ssh和fpn_ssh
|
||||
in_channel: [96,96]
|
||||
```
|
||||
|
||||
|
||||
|
||||
### 训练与评估
|
||||
训练流程与评估流程方法与其他算法一致,请参考[GETTING_STARTED_cn.md](../../docs/tutorials/GETTING_STARTED_cn.md)。
|
||||
**注意:** 人脸检测模型目前不支持边训练边评估。
|
||||
|
||||
#### 在WIDER-FACE数据集上评估
|
||||
- 步骤一:评估并生成结果文件:
|
||||
```shell
|
||||
python -u tools/eval.py -c configs/face_detection/blazeface_1000e.yml \
|
||||
-o weights=output/blazeface_1000e/model_final \
|
||||
multi_scale=True
|
||||
```
|
||||
设置`multi_scale=True`进行多尺度评估,评估完成后,将在`output/pred`中生成txt格式的测试结果。
|
||||
|
||||
- 步骤二:下载官方评估脚本和Ground Truth文件:
|
||||
```
|
||||
wget http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/eval_script/eval_tools.zip
|
||||
unzip eval_tools.zip && rm -f eval_tools.zip
|
||||
```
|
||||
|
||||
- 步骤三:开始评估
|
||||
|
||||
方法一:python评估:
|
||||
```
|
||||
git clone https://github.com/wondervictor/WiderFace-Evaluation.git
|
||||
cd WiderFace-Evaluation
|
||||
# 编译
|
||||
python3 setup.py build_ext --inplace
|
||||
# 开始评估
|
||||
python3 evaluation.py -p /path/to/PaddleDetection/output/pred -g /path/to/eval_tools/ground_truth
|
||||
```
|
||||
|
||||
方法二:MatLab评估:
|
||||
```
|
||||
# 在`eval_tools/wider_eval.m`中修改保存结果路径和绘制曲线的名称:
|
||||
pred_dir = './pred';
|
||||
legend_name = 'Paddle-BlazeFace';
|
||||
|
||||
`wider_eval.m` 是评估模块的主要执行程序。运行命令如下:
|
||||
matlab -nodesktop -nosplash -nojvm -r "run wider_eval.m;quit;"
|
||||
```
|
||||
|
||||
### Python脚本预测
|
||||
为了支持二次开发,这里提供通过Python脚本使用Paddle Detection whl包来进行预测的示例。
|
||||
```python
|
||||
import cv2
|
||||
import paddle
|
||||
import numpy as np
|
||||
from ppdet.core.workspace import load_config
|
||||
from ppdet.engine import Trainer
|
||||
from ppdet.metrics import get_infer_results
|
||||
from ppdet.data.transform.operators import NormalizeImage, Permute
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# 准备基础的参数
|
||||
config_path = 'PaddleDetection/configs/face_detection/blazeface_1000e.yml'
|
||||
cfg = load_config(config_path)
|
||||
weight_path = 'PaddleDetection/output/blazeface_1000e.pdparams'
|
||||
infer_img_path = 'PaddleDetection/demo/hrnet_demo.jpg'
|
||||
cfg.weights = weight_path
|
||||
bbox_thre = 0.8
|
||||
paddle.set_device('gpu')
|
||||
# 创建所需的类
|
||||
trainer = Trainer(cfg, mode='test')
|
||||
trainer.load_weights(cfg.weights)
|
||||
trainer.model.eval()
|
||||
normaler = NormalizeImage(mean=[123, 117, 104], std=[127.502231, 127.502231, 127.502231], is_scale=False)
|
||||
permuter = Permute()
|
||||
# 进行图片读取
|
||||
im = cv2.imread(infer_img_path)
|
||||
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
||||
# 准备数据字典
|
||||
data_dict = {'image': im}
|
||||
data_dict = normaler(data_dict)
|
||||
data_dict = permuter(data_dict)
|
||||
h, w, c = im.shape
|
||||
data_dict['im_id'] = paddle.Tensor(np.array([[0]]))
|
||||
data_dict['im_shape'] = paddle.Tensor(np.array([[h, w]], dtype=np.float32))
|
||||
data_dict['scale_factor'] = paddle.Tensor(np.array([[1., 1.]], dtype=np.float32))
|
||||
data_dict['image'] = paddle.Tensor(data_dict['image'].reshape((1, c, h, w)))
|
||||
data_dict['curr_iter'] = paddle.Tensor(np.array([0]))
|
||||
# 进行预测
|
||||
outs = trainer.model(data_dict)
|
||||
# 对预测的数据进行后处理得到最终的bbox信息
|
||||
for key in ['im_shape', 'scale_factor', 'im_id']:
|
||||
outs[key] = data_dict[key]
|
||||
for key, value in outs.items():
|
||||
outs[key] = value.numpy()
|
||||
clsid2catid, catid2name = {0: 'face'}, {0: 0}
|
||||
batch_res = get_infer_results(outs, clsid2catid)
|
||||
bbox = [sub_dict for sub_dict in batch_res['bbox'] if sub_dict['score'] > bbox_thre]
|
||||
print(bbox)
|
||||
```
|
||||
|
||||
## Citations
|
||||
|
||||
```
|
||||
@article{bazarevsky2019blazeface,
|
||||
title={BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs},
|
||||
author={Valentin Bazarevsky and Yury Kartynnik and Andrey Vakunov and Karthik Raveendran and Matthias Grundmann},
|
||||
year={2019},
|
||||
eprint={1907.05047},
|
||||
archivePrefix={arXiv},
|
||||
```
|
||||
Reference in New Issue
Block a user