更换文档检测模型
This commit is contained in:
38
paddle_detection/configs/faster_rcnn/README.md
Normal file
38
paddle_detection/configs/faster_rcnn/README.md
Normal file
@@ -0,0 +1,38 @@
|
||||
# Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
|
||||
|
||||
## Model Zoo
|
||||
|
||||
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 |
|
||||
| :------------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
|
||||
| ResNet50 | Faster | 1 | 1x | ---- | 36.7 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_1x_coco.pdparams) | [配置文件](./faster_rcnn_r50_1x_coco.yml) |
|
||||
| ResNet50-vd | Faster | 1 | 1x | ---- | 37.6 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_1x_coco.pdparams) | [配置文件](./faster_rcnn_r50_vd_1x_coco.yml) |
|
||||
| ResNet101 | Faster | 1 | 1x | ---- | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_1x_coco.pdparams) | [配置文件](./faster_rcnn_r101_1x_coco.yml) |
|
||||
| ResNet34-FPN | Faster | 1 | 1x | ---- | 37.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_r34_fpn_1x_coco.yml) |
|
||||
| ResNet34-FPN-MultiScaleTest | Faster | 1 | 1x | ---- | 38.2 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_multiscaletest_1x_coco.pdparams) | [配置文件](./faster_rcnn_r34_fpn_multiscaletest_1x_coco.yml) |
|
||||
| ResNet34-vd-FPN | Faster | 1 | 1x | ---- | 38.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_vd_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_r34_vd_fpn_1x_coco.yml) |
|
||||
| ResNet50-FPN | Faster | 1 | 1x | ---- | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_r50_fpn_1x_coco.yml) |
|
||||
| ResNet50-FPN | Faster | 1 | 2x | ---- | 40.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_r50_fpn_2x_coco.yml) |
|
||||
| ResNet50-vd-FPN | Faster | 1 | 1x | ---- | 39.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_r50_vd_fpn_1x_coco.yml) |
|
||||
| ResNet50-vd-FPN | Faster | 1 | 2x | ---- | 40.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_r50_vd_fpn_2x_coco.yml) |
|
||||
| ResNet101-FPN | Faster | 1 | 2x | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_r101_fpn_2x_coco.yml) |
|
||||
| ResNet101-vd-FPN | Faster | 1 | 1x | ---- | 42.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_r101_vd_fpn_1x_coco.yml) |
|
||||
| ResNet101-vd-FPN | Faster | 1 | 2x | ---- | 43.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_r101_vd_fpn_2x_coco.yml) |
|
||||
| ResNeXt101-vd-FPN | Faster | 1 | 1x | ---- | 43.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_x101_vd_64x4d_fpn_1x_coco.yml) |
|
||||
| ResNeXt101-vd-FPN | Faster | 1 | 2x | ---- | 44.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_x101_vd_64x4d_fpn_2x_coco.yml) |
|
||||
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 1x | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](./faster_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
|
||||
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 2x | ---- | 42.3 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](./faster_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
|
||||
| Swin-Tiny-FPN | Faster | 2 | 1x | ---- | 42.6 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_swin_tiny_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_swin_tiny_fpn_1x_coco.yml) |
|
||||
| Swin-Tiny-FPN | Faster | 2 | 2x | ---- | 44.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_swin_tiny_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_swin_tiny_fpn_2x_coco.yml) |
|
||||
| Swin-Tiny-FPN | Faster | 2 | 3x | ---- | 45.3 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_swin_tiny_fpn_3x_coco.pdparams) | [配置文件](../swin/faster_rcnn_swin_tiny_fpn_3x_coco.yml) |
|
||||
|
||||
## Citations
|
||||
```
|
||||
@article{Ren_2017,
|
||||
title={Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks},
|
||||
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
|
||||
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
|
||||
author={Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian},
|
||||
year={2017},
|
||||
month={Jun},
|
||||
}
|
||||
```
|
||||
@@ -0,0 +1,40 @@
|
||||
worker_num: 2
|
||||
TrainReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], interp: 2, keep_ratio: True}
|
||||
- RandomFlip: {prob: 0.5}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
batch_transforms:
|
||||
- PadBatch: {pad_to_stride: 32}
|
||||
batch_size: 1
|
||||
shuffle: true
|
||||
drop_last: true
|
||||
collate_batch: false
|
||||
|
||||
|
||||
EvalReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
batch_transforms:
|
||||
- PadBatch: {pad_to_stride: 32}
|
||||
batch_size: 1
|
||||
shuffle: false
|
||||
drop_last: false
|
||||
|
||||
|
||||
TestReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
batch_transforms:
|
||||
- PadBatch: {pad_to_stride: 32}
|
||||
batch_size: 1
|
||||
shuffle: false
|
||||
drop_last: false
|
||||
@@ -0,0 +1,66 @@
|
||||
architecture: FasterRCNN
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
|
||||
|
||||
FasterRCNN:
|
||||
backbone: ResNet
|
||||
rpn_head: RPNHead
|
||||
bbox_head: BBoxHead
|
||||
# post process
|
||||
bbox_post_process: BBoxPostProcess
|
||||
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 50
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [2]
|
||||
num_stages: 3
|
||||
|
||||
RPNHead:
|
||||
anchor_generator:
|
||||
aspect_ratios: [0.5, 1.0, 2.0]
|
||||
anchor_sizes: [32, 64, 128, 256, 512]
|
||||
strides: [16]
|
||||
rpn_target_assign:
|
||||
batch_size_per_im: 256
|
||||
fg_fraction: 0.5
|
||||
negative_overlap: 0.3
|
||||
positive_overlap: 0.7
|
||||
use_random: True
|
||||
train_proposal:
|
||||
min_size: 0.0
|
||||
nms_thresh: 0.7
|
||||
pre_nms_top_n: 12000
|
||||
post_nms_top_n: 2000
|
||||
topk_after_collect: False
|
||||
test_proposal:
|
||||
min_size: 0.0
|
||||
nms_thresh: 0.7
|
||||
pre_nms_top_n: 6000
|
||||
post_nms_top_n: 1000
|
||||
|
||||
|
||||
BBoxHead:
|
||||
head: Res5Head
|
||||
roi_extractor:
|
||||
resolution: 14
|
||||
sampling_ratio: 0
|
||||
aligned: True
|
||||
bbox_assigner: BBoxAssigner
|
||||
with_pool: true
|
||||
|
||||
BBoxAssigner:
|
||||
batch_size_per_im: 512
|
||||
bg_thresh: 0.5
|
||||
fg_thresh: 0.5
|
||||
fg_fraction: 0.25
|
||||
use_random: True
|
||||
|
||||
BBoxPostProcess:
|
||||
decode: RCNNBox
|
||||
nms:
|
||||
name: MultiClassNMS
|
||||
keep_top_k: 100
|
||||
score_threshold: 0.05
|
||||
nms_threshold: 0.5
|
||||
@@ -0,0 +1,73 @@
|
||||
architecture: FasterRCNN
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
|
||||
|
||||
FasterRCNN:
|
||||
backbone: ResNet
|
||||
neck: FPN
|
||||
rpn_head: RPNHead
|
||||
bbox_head: BBoxHead
|
||||
# post process
|
||||
bbox_post_process: BBoxPostProcess
|
||||
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 50
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
|
||||
FPN:
|
||||
out_channel: 256
|
||||
|
||||
RPNHead:
|
||||
anchor_generator:
|
||||
aspect_ratios: [0.5, 1.0, 2.0]
|
||||
anchor_sizes: [[32], [64], [128], [256], [512]]
|
||||
strides: [4, 8, 16, 32, 64]
|
||||
rpn_target_assign:
|
||||
batch_size_per_im: 256
|
||||
fg_fraction: 0.5
|
||||
negative_overlap: 0.3
|
||||
positive_overlap: 0.7
|
||||
use_random: True
|
||||
train_proposal:
|
||||
min_size: 0.0
|
||||
nms_thresh: 0.7
|
||||
pre_nms_top_n: 2000
|
||||
post_nms_top_n: 1000
|
||||
topk_after_collect: True
|
||||
test_proposal:
|
||||
min_size: 0.0
|
||||
nms_thresh: 0.7
|
||||
pre_nms_top_n: 1000
|
||||
post_nms_top_n: 1000
|
||||
|
||||
|
||||
BBoxHead:
|
||||
head: TwoFCHead
|
||||
roi_extractor:
|
||||
resolution: 7
|
||||
sampling_ratio: 0
|
||||
aligned: True
|
||||
bbox_assigner: BBoxAssigner
|
||||
|
||||
BBoxAssigner:
|
||||
batch_size_per_im: 512
|
||||
bg_thresh: 0.5
|
||||
fg_thresh: 0.5
|
||||
fg_fraction: 0.25
|
||||
use_random: True
|
||||
|
||||
TwoFCHead:
|
||||
out_channel: 1024
|
||||
|
||||
|
||||
BBoxPostProcess:
|
||||
decode: RCNNBox
|
||||
nms:
|
||||
name: MultiClassNMS
|
||||
keep_top_k: 100
|
||||
score_threshold: 0.05
|
||||
nms_threshold: 0.5
|
||||
@@ -0,0 +1,41 @@
|
||||
worker_num: 2
|
||||
TrainReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- RandomResizeCrop: {resizes: [400, 500, 600], cropsizes: [[384, 600], ], prob: 0.5}
|
||||
- RandomResize: {target_size: [[480, 1333], [512, 1333], [544, 1333], [576, 1333], [608, 1333], [640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 2}
|
||||
- RandomFlip: {prob: 0.5}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
batch_transforms:
|
||||
- PadBatch: {pad_to_stride: 32}
|
||||
batch_size: 2
|
||||
shuffle: true
|
||||
drop_last: true
|
||||
collate_batch: false
|
||||
|
||||
EvalReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
batch_transforms:
|
||||
- PadBatch: {pad_to_stride: 32}
|
||||
batch_size: 1
|
||||
shuffle: false
|
||||
drop_last: false
|
||||
|
||||
|
||||
TestReader:
|
||||
inputs_def:
|
||||
image_shape: [-1, 3, 640, 640]
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- Resize: {interp: 2, target_size: 640, keep_ratio: True}
|
||||
- Pad: {size: 640}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
batch_size: 1
|
||||
shuffle: false
|
||||
drop_last: false
|
||||
@@ -0,0 +1,70 @@
|
||||
architecture: FasterRCNN
|
||||
# pretrain_weights: # rewrite in SwinTransformer.pretrained in ppdet/modeling/backbones/swin_transformer.py
|
||||
|
||||
FasterRCNN:
|
||||
backbone: SwinTransformer
|
||||
neck: FPN
|
||||
rpn_head: RPNHead
|
||||
bbox_head: BBoxHead
|
||||
bbox_post_process: BBoxPostProcess
|
||||
|
||||
SwinTransformer:
|
||||
arch: 'swin_T_224'
|
||||
ape: false
|
||||
drop_path_rate: 0.1
|
||||
patch_norm: true
|
||||
out_indices: [0, 1, 2, 3]
|
||||
pretrained: https://paddledet.bj.bcebos.com/models/pretrained/swin_tiny_patch4_window7_224_22kto1k_pretrained.pdparams
|
||||
|
||||
FPN:
|
||||
out_channel: 256
|
||||
|
||||
RPNHead:
|
||||
anchor_generator:
|
||||
aspect_ratios: [0.5, 1.0, 2.0]
|
||||
anchor_sizes: [[32], [64], [128], [256], [512]]
|
||||
strides: [4, 8, 16, 32, 64]
|
||||
rpn_target_assign:
|
||||
batch_size_per_im: 256
|
||||
fg_fraction: 0.5
|
||||
negative_overlap: 0.3
|
||||
positive_overlap: 0.7
|
||||
use_random: True
|
||||
train_proposal:
|
||||
min_size: 0.0
|
||||
nms_thresh: 0.7
|
||||
pre_nms_top_n: 2000
|
||||
post_nms_top_n: 1000
|
||||
topk_after_collect: True
|
||||
test_proposal:
|
||||
min_size: 0.0
|
||||
nms_thresh: 0.7
|
||||
pre_nms_top_n: 1000
|
||||
post_nms_top_n: 1000
|
||||
|
||||
|
||||
BBoxHead:
|
||||
head: TwoFCHead
|
||||
roi_extractor:
|
||||
resolution: 7
|
||||
sampling_ratio: 0
|
||||
aligned: True
|
||||
bbox_assigner: BBoxAssigner
|
||||
|
||||
BBoxAssigner:
|
||||
batch_size_per_im: 512
|
||||
bg_thresh: 0.5
|
||||
fg_thresh: 0.5
|
||||
fg_fraction: 0.25
|
||||
use_random: True
|
||||
|
||||
TwoFCHead:
|
||||
out_channel: 1024
|
||||
|
||||
BBoxPostProcess:
|
||||
decode: RCNNBox
|
||||
nms:
|
||||
name: MultiClassNMS
|
||||
keep_top_k: 100
|
||||
score_threshold: 0.05
|
||||
nms_threshold: 0.5
|
||||
@@ -0,0 +1,40 @@
|
||||
worker_num: 2
|
||||
TrainReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], interp: 2, keep_ratio: True}
|
||||
- RandomFlip: {prob: 0.5}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
batch_transforms:
|
||||
- PadBatch: {pad_to_stride: -1}
|
||||
batch_size: 1
|
||||
shuffle: true
|
||||
drop_last: true
|
||||
collate_batch: false
|
||||
|
||||
|
||||
EvalReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
batch_transforms:
|
||||
- PadBatch: {pad_to_stride: -1}
|
||||
batch_size: 1
|
||||
shuffle: false
|
||||
drop_last: false
|
||||
|
||||
|
||||
TestReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
batch_transforms:
|
||||
- PadBatch: {pad_to_stride: -1}
|
||||
batch_size: 1
|
||||
shuffle: false
|
||||
drop_last: false
|
||||
19
paddle_detection/configs/faster_rcnn/_base_/optimizer_1x.yml
Normal file
19
paddle_detection/configs/faster_rcnn/_base_/optimizer_1x.yml
Normal file
@@ -0,0 +1,19 @@
|
||||
epoch: 12
|
||||
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [8, 11]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
steps: 1000
|
||||
|
||||
OptimizerBuilder:
|
||||
optimizer:
|
||||
momentum: 0.9
|
||||
type: Momentum
|
||||
regularizer:
|
||||
factor: 0.0001
|
||||
type: L2
|
||||
@@ -0,0 +1,20 @@
|
||||
epoch: 12
|
||||
|
||||
LearningRate:
|
||||
base_lr: 0.0001
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [8, 11]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
steps: 1000
|
||||
|
||||
OptimizerBuilder:
|
||||
clip_grad_by_norm: 1.0
|
||||
optimizer:
|
||||
type: AdamW
|
||||
weight_decay: 0.05
|
||||
param_groups:
|
||||
- params: ['absolute_pos_embed', 'relative_position_bias_table', 'norm']
|
||||
weight_decay: 0.0
|
||||
@@ -0,0 +1,14 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_1x_coco.yml',
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r101_1x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 101
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [2]
|
||||
num_stages: 3
|
||||
@@ -0,0 +1,14 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_fpn_1x_coco.yml',
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r101_fpn_1x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 101
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
@@ -0,0 +1,25 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_fpn_1x_coco.yml',
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r101_fpn_2x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 101
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
steps: 1000
|
||||
@@ -0,0 +1,14 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_fpn_1x_coco.yml',
|
||||
]
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r101_vd_fpn_1x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 101
|
||||
variant: d
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
@@ -0,0 +1,25 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_fpn_1x_coco.yml',
|
||||
]
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r101_vd_fpn_2x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 101
|
||||
variant: d
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
steps: 1000
|
||||
@@ -0,0 +1,14 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_fpn_1x_coco.yml',
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r34_fpn_1x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 34
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
@@ -0,0 +1,22 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r34_fpn_1x_coco.yml',
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r34_fpn_multiscaletest_1x_coco/model_final
|
||||
|
||||
EvalReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
# - Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
|
||||
- MultiscaleTestResize: {origin_target_size: [800, 1333], target_size: [700 , 900], use_flip: False}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
|
||||
TestReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
# - Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
|
||||
- MultiscaleTestResize: {origin_target_size: [800, 1333], target_size: [700 , 900], use_flip: False}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
@@ -0,0 +1,15 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_fpn_1x_coco.yml',
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_vd_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r34_vd_fpn_1x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 34
|
||||
variant: d
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
@@ -0,0 +1,8 @@
|
||||
_BASE_: [
|
||||
'../datasets/coco_detection.yml',
|
||||
'../runtime.yml',
|
||||
'_base_/optimizer_1x.yml',
|
||||
'_base_/faster_rcnn_r50.yml',
|
||||
'_base_/faster_reader.yml',
|
||||
]
|
||||
weights: output/faster_rcnn_r50_1x_coco/model_final
|
||||
@@ -0,0 +1,8 @@
|
||||
_BASE_: [
|
||||
'../datasets/coco_detection.yml',
|
||||
'../runtime.yml',
|
||||
'_base_/optimizer_1x.yml',
|
||||
'_base_/faster_rcnn_r50_fpn.yml',
|
||||
'_base_/faster_fpn_reader.yml',
|
||||
]
|
||||
weights: output/faster_rcnn_r50_fpn_1x_coco/model_final
|
||||
@@ -0,0 +1,15 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_fpn_1x_coco.yml',
|
||||
]
|
||||
weights: output/faster_rcnn_r50_fpn_2x_coco/model_final
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
steps: 1000
|
||||
@@ -0,0 +1,14 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_1x_coco.yml',
|
||||
]
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r50_vd_1x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 50
|
||||
variant: d
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [2]
|
||||
num_stages: 3
|
||||
@@ -0,0 +1,14 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_fpn_1x_coco.yml',
|
||||
]
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r50_vd_fpn_1x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 50
|
||||
variant: d
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
@@ -0,0 +1,25 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_fpn_1x_coco.yml',
|
||||
]
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r50_vd_fpn_2x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# index 0 stands for res2
|
||||
depth: 50
|
||||
variant: d
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
steps: 1000
|
||||
@@ -0,0 +1,29 @@
|
||||
_BASE_: [
|
||||
'../datasets/coco_detection.yml',
|
||||
'../runtime.yml',
|
||||
'_base_/optimizer_1x.yml',
|
||||
'_base_/faster_rcnn_r50_fpn.yml',
|
||||
'_base_/faster_fpn_reader.yml',
|
||||
]
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r50_vd_fpn_ssld_1x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
depth: 50
|
||||
variant: d
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
lr_mult_list: [0.05, 0.05, 0.1, 0.15]
|
||||
|
||||
epoch: 12
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [8, 11]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
steps: 1000
|
||||
@@ -0,0 +1,29 @@
|
||||
_BASE_: [
|
||||
'../datasets/coco_detection.yml',
|
||||
'../runtime.yml',
|
||||
'_base_/optimizer_1x.yml',
|
||||
'_base_/faster_rcnn_r50_fpn.yml',
|
||||
'_base_/faster_fpn_reader.yml',
|
||||
]
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
|
||||
weights: output/faster_rcnn_r50_vd_fpn_ssld_2x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
depth: 50
|
||||
variant: d
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
lr_mult_list: [0.05, 0.05, 0.1, 0.15]
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [12, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
steps: 1000
|
||||
@@ -0,0 +1,8 @@
|
||||
_BASE_: [
|
||||
'../datasets/coco_detection.yml',
|
||||
'../runtime.yml',
|
||||
'_base_/optimizer_swin_1x.yml',
|
||||
'_base_/faster_rcnn_swin_tiny_fpn.yml',
|
||||
'_base_/faster_rcnn_swin_reader.yml',
|
||||
]
|
||||
weights: output/faster_rcnn_swin_tiny_fpn_1x_coco/model_final
|
||||
@@ -0,0 +1,16 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_swin_tiny_fpn_1x_coco.yml',
|
||||
]
|
||||
weights: output/faster_rcnn_swin_tiny_fpn_2x_coco/model_final
|
||||
|
||||
epoch: 24
|
||||
|
||||
LearningRate:
|
||||
base_lr: 0.0001
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
steps: 1000
|
||||
@@ -0,0 +1,17 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_fpn_1x_coco.yml',
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNeXt101_vd_64x4d_pretrained.pdparams
|
||||
weights: output/faster_rcnn_x101_vd_64x4d_fpn_1x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# for ResNeXt: groups, base_width, base_channels
|
||||
depth: 101
|
||||
groups: 64
|
||||
base_width: 4
|
||||
variant: d
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
@@ -0,0 +1,28 @@
|
||||
_BASE_: [
|
||||
'faster_rcnn_r50_fpn_1x_coco.yml',
|
||||
]
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNeXt101_vd_64x4d_pretrained.pdparams
|
||||
weights: output/faster_rcnn_x101_vd_64x4d_fpn_2x_coco/model_final
|
||||
|
||||
ResNet:
|
||||
# for ResNeXt: groups, base_width, base_channels
|
||||
depth: 101
|
||||
groups: 64
|
||||
base_width: 4
|
||||
variant: d
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [0,1,2,3]
|
||||
num_stages: 4
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
steps: 1000
|
||||
Reference in New Issue
Block a user