更换文档检测模型
This commit is contained in:
1
paddle_detection/configs/mot/headtracking21/README.md
Symbolic link
1
paddle_detection/configs/mot/headtracking21/README.md
Symbolic link
@@ -0,0 +1 @@
|
||||
README_cn.md
|
||||
95
paddle_detection/configs/mot/headtracking21/README_cn.md
Normal file
95
paddle_detection/configs/mot/headtracking21/README_cn.md
Normal file
@@ -0,0 +1,95 @@
|
||||
[English](README.md) | 简体中文
|
||||
# 特色垂类跟踪模型
|
||||
|
||||
## 人头跟踪(Head Tracking)
|
||||
|
||||
现有行人跟踪器对高人群密度场景表现不佳,人头跟踪更适用于密集场景的跟踪。
|
||||
[HT-21](https://motchallenge.net/data/Head_Tracking_21)是一个高人群密度拥挤场景的人头跟踪数据集,场景包括不同的光线和环境条件下的拥挤的室内和室外场景,所有序列的帧速率都是25fps。
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/22989727/205540742-820984c2-8920-467a-bdde-faea421018c5.gif" width='800'/>
|
||||
</div>
|
||||
|
||||
## 模型库
|
||||
### FairMOT 和 ByteTrack 在 HT-21 Training Set上的结果
|
||||
| 模型 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
|
||||
| :--------------| :------- | :----: | :----: | :---: | :----: | :---: | :------: | :----: |:----: |
|
||||
| FairMOT DLA-34 | 1088x608 | 64.7 | 69.0 | 8533 | 148817 | 234970 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_headtracking21.yml) |
|
||||
| ByteTrack-x | 1440x800 | 64.1 | 63.4 | 4191 | 185162 | 210240 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/bytetrack_yolox_ht21.pdparams) | [配置文件](../bytetrack/bytetrack_yolox_ht21.yml) |
|
||||
|
||||
### FairMOT 和 ByteTrack 在 HT-21 Test Set上的结果
|
||||
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
|
||||
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: |:-------: | :----: | :----: |
|
||||
| FairMOT DLA-34 | 1088x608 | 60.8 | 62.8 | 12781 | 118109 | 198896 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_headtracking21.yml) |
|
||||
| ByteTrack-x | 1440x800 | 72.6 | 61.8 | 5163 | 71235 | 154139 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/bytetrack_yolox_ht21.pdparams) | [配置文件](../bytetrack/bytetrack_yolox_ht21.yml) |
|
||||
|
||||
**注意:**
|
||||
- FairMOT DLA-34使用2个GPU进行训练,每个GPU上batch size为6,训练30个epoch。
|
||||
- ByteTrack使用YOLOX-x做检测器,使用8个GPU进行训练,每个GPU上batch size为8,训练30个epoch,具体细节参照[bytetrack](../bytetrack/)。
|
||||
- 此处提供PaddleDetection团队整理后的[下载链接](https://bj.bcebos.com/v1/paddledet/data/mot/HT21.zip),下载后需解压放到`dataset/mot/`目录下,HT-21 Test集的结果需要交到[官网](https://motchallenge.net)评测。
|
||||
|
||||
|
||||
## 快速开始
|
||||
|
||||
### 1. 训练
|
||||
使用2个GPU通过如下命令一键式启动训练
|
||||
```bash
|
||||
python -m paddle.distributed.launch --log_dir=./fairmot_dla34_30e_1088x608_headtracking21/ --gpus 0,1 tools/train.py -c configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml
|
||||
```
|
||||
|
||||
### 2. 评估
|
||||
使用单张GPU通过如下命令一键式启动评估
|
||||
```bash
|
||||
# 使用PaddleDetection发布的权重
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams
|
||||
|
||||
# 使用训练保存的checkpoint
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml -o weights=output/fairmot_dla34_30e_1088x608_headtracking21/model_final.pdparams
|
||||
```
|
||||
|
||||
### 3. 预测
|
||||
使用单个GPU通过如下命令预测一个视频,并保存为视频
|
||||
```bash
|
||||
# 预测一个视频
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams --video_file={your video name}.mp4 --save_videos
|
||||
```
|
||||
**注意:**
|
||||
- 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`。
|
||||
|
||||
### 4. 导出预测模型
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams
|
||||
```
|
||||
|
||||
### 5. 用导出的模型基于Python去预测
|
||||
```bash
|
||||
python deploy/pptracking/python/mot_jde_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608_headtracking21 --video_file={your video name}.mp4 --device=GPU --save_mot_txts
|
||||
```
|
||||
**注意:**
|
||||
- 跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加`--save_mot_txts`表示保存跟踪结果的txt文件,或`--save_images`表示保存跟踪结果可视化图片。
|
||||
- 跟踪结果txt文件每行信息是`frame,id,x1,y1,w,h,score,-1,-1,-1`。
|
||||
|
||||
## 引用
|
||||
```
|
||||
@article{zhang2020fair,
|
||||
title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
|
||||
author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
|
||||
journal={arXiv preprint arXiv:2004.01888},
|
||||
year={2020}
|
||||
}
|
||||
|
||||
@InProceedings{Sundararaman_2021_CVPR,
|
||||
author = {Sundararaman, Ramana and De Almeida Braga, Cedric and Marchand, Eric and Pettre, Julien},
|
||||
title = {Tracking Pedestrian Heads in Dense Crowd},
|
||||
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
||||
month = {June},
|
||||
year = {2021},
|
||||
pages = {3865-3875}
|
||||
}
|
||||
|
||||
@article{zhang2021bytetrack,
|
||||
title={ByteTrack: Multi-Object Tracking by Associating Every Detection Box},
|
||||
author={Zhang, Yifu and Sun, Peize and Jiang, Yi and Yu, Dongdong and Yuan, Zehuan and Luo, Ping and Liu, Wenyu and Wang, Xinggang},
|
||||
journal={arXiv preprint arXiv:2110.06864},
|
||||
year={2021}
|
||||
}
|
||||
```
|
||||
@@ -0,0 +1,26 @@
|
||||
_BASE_: [
|
||||
'../fairmot/fairmot_dla34_30e_1088x608.yml'
|
||||
]
|
||||
|
||||
weights: output/fairmot_dla34_30e_1088x608_headtracking21/model_final
|
||||
|
||||
# for MOT training
|
||||
TrainDataset:
|
||||
!MOTDataSet
|
||||
dataset_dir: dataset/mot
|
||||
image_lists: ['ht21.train']
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide']
|
||||
|
||||
# for MOT evaluation
|
||||
# If you want to change the MOT evaluation dataset, please modify 'data_root'
|
||||
EvalMOTDataset:
|
||||
!MOTImageFolder
|
||||
dataset_dir: dataset/mot
|
||||
data_root: HT21/images/test
|
||||
keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT
|
||||
|
||||
# for MOT video inference
|
||||
TestMOTDataset:
|
||||
!MOTImageFolder
|
||||
dataset_dir: dataset/mot
|
||||
keep_ori_im: True # set True if save visualization images or video
|
||||
Reference in New Issue
Block a user