更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,119 @@
English | [简体中文](README_cn.md)
# JDE (Towards Real-Time Multi-Object Tracking)
## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model_Zoo)
- [Getting Start](#Getting_Start)
- [Citations](#Citations)
## Introduction
- [JDE](https://arxiv.org/abs/1909.12605) (Joint Detection and Embedding) learns the object detection task and appearance embedding task simutaneously in a shared neural network. And the detection results and the corresponding embeddings are also outputed at the same time. JDE original paper is based on an Anchor Base detector YOLOv3, adding a new ReID branch to learn embeddings. The training process is constructed as a multi-task learning problem, taking into account both accuracy and speed.
### PP-Tracking real-time MOT system
In addition, PaddleDetection also provides [PP-Tracking](../../../deploy/pptracking/README.md) real-time multi-object tracking system.
PP-Tracking is the first open source real-time Multi-Object Tracking system, and it is based on PaddlePaddle deep learning framework. It has rich models, wide application and high efficiency deployment.
PP-Tracking supports two paradigms: single camera tracking (MOT) and multi-camera tracking (MTMCT). Aiming at the difficulties and pain points of actual business, PP-Tracking provides various MOT functions and applications such as pedestrian tracking, vehicle tracking, multi-class tracking, small object tracking, traffic statistics and multi-camera tracking. The deployment method supports API and GUI visual interface, and the deployment language supports Python and C++, The deployment platform environment supports Linux, NVIDIA Jetson, etc.
### AI studio public project tutorial
PP-tracking provides an AI studio public project tutorial. Please refer to this [tutorial](https://aistudio.baidu.com/aistudio/projectdetail/3022582).
<div align="center">
<img src="https://user-images.githubusercontent.com/22989727/205540305-457d48bf-e9ec-4f28-896c-64c870126e05.gif" width=500 />
</div>
## Model Zoo
### JDE Results on MOT-16 Training Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
| :----------------- | :------- | :----: | :----: | :---: | :----: | :---: | :---: | :---: | :---: |
| DarkNet53 | 1088x608 | 72.0 | 66.9 | 1397 | 7274 | 22209 | - |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_1088x608.yml) |
| DarkNet53 | 864x480 | 69.1 | 64.7 | 1539 | 7544 | 25046 | - |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_864x480.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_864x480.yml) |
| DarkNet53 | 576x320 | 63.7 | 64.4 | 1310 | 6782 | 31964 | - |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_576x320.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_576x320.yml) |
### JDE Results on MOT-16 Test Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
| :----------------- | :------- | :----: | :----: | :---: | :----: | :---: | :---: | :---: | :---: |
| DarkNet53(paper) | 1088x608 | 64.4 | 55.8 | 1544 | - | - | - | - | - |
| DarkNet53 | 1088x608 | 64.6 | 58.5 | 1864 | 10550 | 52088 | - |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_1088x608.yml) |
| DarkNet53(paper) | 864x480 | 62.1 | 56.9 | 1608 | - | - | - | - | - |
| DarkNet53 | 864x480 | 63.2 | 57.7 | 1966 | 10070 | 55081 | - |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_864x480.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_864x480.yml) |
| DarkNet53 | 576x320 | 59.1 | 56.4 | 1911 | 10923 | 61789 | - |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_576x320.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_576x320.yml) |
**Notes:**
- JDE used 8 GPUs for training and mini-batch size as 4 on each GPU, and trained for 30 epoches.
## Getting Start
### 1. Training
Training JDE on 8 GPUs with following command
```bash
python -m paddle.distributed.launch --log_dir=./jde_darknet53_30e_1088x608/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml
```
### 2. Evaluation
Evaluating the track performance of JDE on val dataset in single GPU with following commands:
```bash
# use weights released in PaddleDetection model zoo
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
# use saved checkpoint in training
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=output/jde_darknet53_30e_1088x608/model_final.pdparams
```
**Notes:**
- The default evaluation dataset is MOT-16 Train Set. If you want to change the evaluation dataset, please refer to the following code and modify `configs/datasets/mot.yml`
```
EvalMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
data_root: MOT17/images/train
keep_ori_im: False # set True if save visualization images or video
```
- Tracking results will be saved in `{output_dir}/mot_results/`, and every sequence has one txt file, each line of the txt file is `frame,id,x1,y1,w,h,score,-1,-1,-1`, and you can set `{output_dir}` by `--output_dir`.
### 3. Inference
Inference a video on single GPU with following command:
```bash
# inference on video and save a video
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams --video_file={your video name}.mp4 --save_videos
```
**Notes:**
- Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`.
### 4. Export model
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
```
### 5. Using exported model for python inference
```bash
python deploy/pptracking/python/mot_jde_infer.py --model_dir=output_inference/jde_darknet53_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --save_mot_txts
```
**Notes:**
- The tracking model is used to predict the video, and does not support the prediction of a single image. The visualization video of the tracking results is saved by default. You can add `--save_mot_txts` to save the txt result file, or `--save_images` to save the visualization images.
- Each line of the tracking results txt file is `frame,id,x1,y1,w,h,score,-1,-1,-1`.
## Citations
```
@article{wang2019towards,
title={Towards Real-Time Multi-Object Tracking},
author={Wang, Zhongdao and Zheng, Liang and Liu, Yixuan and Wang, Shengjin},
journal={arXiv preprint arXiv:1909.12605},
year={2019}
}
```

View File

@@ -0,0 +1,118 @@
简体中文 | [English](README.md)
# JDE (Towards Real-Time Multi-Object Tracking)
## 内容
- [简介](#简介)
- [模型库](#模型库)
- [快速开始](#快速开始)
- [引用](#引用)
## 内容
[JDE](https://arxiv.org/abs/1909.12605)(Joint Detection and Embedding)是在一个单一的共享神经网络中同时学习目标检测任务和embedding任务并同时输出检测结果和对应的外观embedding匹配的算法。JDE原论文是基于Anchor Base的YOLOv3检测器新增加一个ReID分支学习embedding训练过程被构建为一个多任务联合学习问题兼顾精度和速度。
### PP-Tracking 实时多目标跟踪系统
此外PaddleDetection还提供了[PP-Tracking](../../../deploy/pptracking/README.md)实时多目标跟踪系统。PP-Tracking是基于PaddlePaddle深度学习框架的业界首个开源的实时多目标跟踪系统具有模型丰富、应用广泛和部署高效三大优势。
PP-Tracking支持单镜头跟踪(MOT)和跨镜头跟踪(MTMCT)两种模式针对实际业务的难点和痛点提供了行人跟踪、车辆跟踪、多类别跟踪、小目标跟踪、流量统计以及跨镜头跟踪等各种多目标跟踪功能和应用部署方式支持API调用和GUI可视化界面部署语言支持Python和C++部署平台环境支持Linux、NVIDIA Jetson等。
### AI Studio公开项目案例
PP-Tracking 提供了AI Studio公开项目案例教程请参考[PP-Tracking之手把手玩转多目标跟踪](https://aistudio.baidu.com/aistudio/projectdetail/3022582)。
<div align="center">
<img src="https://user-images.githubusercontent.com/22989727/205540305-457d48bf-e9ec-4f28-896c-64c870126e05.gif" width=500 />
</div>
## 模型库
### JDE在MOT-16 Training Set上结果
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
| :----------------- | :------- | :----: | :----: | :---: | :----: | :---: | :---: | :---: | :---: |
| DarkNet53 | 1088x608 | 72.0 | 66.9 | 1397 | 7274 | 22209 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_1088x608.yml) |
| DarkNet53 | 864x480 | 69.1 | 64.7 | 1539 | 7544 | 25046 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_864x480.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_864x480.yml) |
| DarkNet53 | 576x320 | 63.7 | 64.4 | 1310 | 6782 | 31964 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_576x320.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_576x320.yml) |
### JDE在MOT-16 Test Set上结果
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
| :----------------- | :------- | :----: | :----: | :---: | :----: | :---: | :---: | :---: | :---: |
| DarkNet53(paper) | 1088x608 | 64.4 | 55.8 | 1544 | - | - | - | - | - |
| DarkNet53 | 1088x608 | 64.6 | 58.5 | 1864 | 10550 | 52088 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_1088x608.yml) |
| DarkNet53(paper) | 864x480 | 62.1 | 56.9 | 1608 | - | - | - | - | - |
| DarkNet53 | 864x480 | 63.2 | 57.7 | 1966 | 10070 | 55081 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_864x480.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_864x480.yml) |
| DarkNet53 | 576x320 | 59.1 | 56.4 | 1911 | 10923 | 61789 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_576x320.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_576x320.yml) |
**注意:**
- JDE使用8个GPU进行训练每个GPU上batch size为4训练了30个epoch。
## 快速开始
### 1. 训练
使用8GPU通过如下命令一键式启动训练
```bash
python -m paddle.distributed.launch --log_dir=./jde_darknet53_30e_1088x608/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml
```
### 2. 评估
使用8GPU通过如下命令一键式启动评估
```bash
# 使用PaddleDetection发布的权重
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
# 使用训练保存的checkpoint
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=output/jde_darknet53_30e_1088x608/model_final.pdparams
```
**注意:**
- 默认评估的是MOT-16 Train Set数据集, 如需换评估数据集可参照以下代码修改`configs/datasets/mot.yml`
```
EvalMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
data_root: MOT17/images/train
keep_ori_im: False # set True if save visualization images or video
```
- 跟踪结果会存于`{output_dir}/mot_results/`中里面每个视频序列对应一个txt每个txt文件每行信息是`frame,id,x1,y1,w,h,score,-1,-1,-1`, 此外`{output_dir}`可通过`--output_dir`设置。
### 3. 预测
使用单个GPU通过如下命令预测一个视频并保存为视频
```bash
# 预测一个视频
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams --video_file={your video name}.mp4 --save_videos
```
**注意:**
- 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`。
### 4. 导出预测模型
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
```
### 5. 用导出的模型基于Python去预测
```bash
python deploy/pptracking/python/mot_jde_infer.py --model_dir=output_inference/jde_darknet53_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --save_mot_txts
```
**注意:**
- 跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加`--save_mot_txts`表示保存跟踪结果的txt文件或`--save_images`表示保存跟踪结果可视化图片。
- 跟踪结果txt文件每行信息是`frame,id,x1,y1,w,h,score,-1,-1,-1`。
## 引用
```
@article{wang2019towards,
title={Towards Real-Time Multi-Object Tracking},
author={Wang, Zhongdao and Zheng, Liang and Liu, Yixuan and Wang, Shengjin},
journal={arXiv preprint arXiv:1909.12605},
year={2019}
}
```

View File

@@ -0,0 +1,56 @@
architecture: JDE
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/DarkNet53_pretrained.pdparams
find_unused_parameters: True
JDE:
detector: YOLOv3
reid: JDEEmbeddingHead
tracker: JDETracker
YOLOv3:
backbone: DarkNet
neck: YOLOv3FPN
yolo_head: YOLOv3Head
post_process: JDEBBoxPostProcess
for_mot: True
DarkNet:
depth: 53
return_idx: [2, 3, 4]
freeze_norm: True
YOLOv3FPN:
freeze_norm: True
YOLOv3Head:
anchors: [[128,384], [180,540], [256,640], [512,640],
[32,96], [45,135], [64,192], [90,271],
[8,24], [11,34], [16,48], [23,68]]
anchor_masks: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
loss: JDEDetectionLoss
JDEBBoxPostProcess:
decode:
name: JDEBox
conf_thresh: 0.3
downsample_ratio: 32
nms:
name: MultiClassNMS
keep_top_k: 500
score_threshold: 0.01
nms_threshold: 0.5
nms_top_k: 2000
normalized: true
JDEEmbeddingHead:
anchor_levels: 3
anchor_scales: 4
embedding_dim: 512
emb_loss: JDEEmbeddingLoss
jde_loss: JDELoss
JDETracker:
det_thresh: 0.3
track_buffer: 30
min_box_area: 200
vertical_ratio: 1.6 # for pedestrian

View File

@@ -0,0 +1,48 @@
worker_num: 8
TrainReader:
sample_transforms:
- Decode: {}
- RGBReverse: {}
- AugmentHSV: {}
- LetterBoxResize: {target_size: [608, 1088]}
- MOTRandomAffine: {}
- RandomFlip: {}
- BboxXYXY2XYWH: {}
- NormalizeBox: {}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- RGBReverse: {}
- Permute: {}
batch_transforms:
- Gt2JDETargetThres:
anchor_masks: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
anchors: [[[128,384], [180,540], [256,640], [512,640]],
[[32,96], [45,135], [64,192], [90,271]],
[[8,24], [11,34], [16,48], [23,68]]]
downsample_ratios: [32, 16, 8]
ide_thresh: 0.5
fg_thresh: 0.5
bg_thresh: 0.4
batch_size: 4
shuffle: true
drop_last: true
use_shared_memory: true
EvalMOTReader:
sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [608, 1088]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {}
batch_size: 1
TestMOTReader:
inputs_def:
image_shape: [3, 608, 1088]
sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [608, 1088]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {}
batch_size: 1

View File

@@ -0,0 +1,48 @@
worker_num: 2
TrainReader:
sample_transforms:
- Decode: {}
- RGBReverse: {}
- AugmentHSV: {}
- LetterBoxResize: {target_size: [320, 576]}
- MOTRandomAffine: {}
- RandomFlip: {}
- BboxXYXY2XYWH: {}
- NormalizeBox: {}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- RGBReverse: {}
- Permute: {}
batch_transforms:
- Gt2JDETargetThres:
anchor_masks: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
anchors: [[[85,255], [120,360], [170,420], [340,420]],
[[21,64], [30,90], [43,128], [60,180]],
[[6,16], [8,23], [11,32], [16,45]]]
downsample_ratios: [32, 16, 8]
ide_thresh: 0.5
fg_thresh: 0.5
bg_thresh: 0.4
batch_size: 4
shuffle: true
drop_last: true
use_shared_memory: true
EvalMOTReader:
sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [320, 576]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {}
batch_size: 1
TestMOTReader:
inputs_def:
image_shape: [3, 320, 576]
sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [320, 576]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {}
batch_size: 1

View File

@@ -0,0 +1,48 @@
worker_num: 2
TrainReader:
sample_transforms:
- Decode: {}
- RGBReverse: {}
- AugmentHSV: {}
- LetterBoxResize: {target_size: [480, 864]}
- MOTRandomAffine: {}
- RandomFlip: {}
- BboxXYXY2XYWH: {}
- NormalizeBox: {}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- RGBReverse: {}
- Permute: {}
batch_transforms:
- Gt2JDETargetThres:
anchor_masks: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
anchors: [[[102,305], [143, 429], [203,508], [407,508]],
[[25,76], [36,107], [51,152], [71,215]],
[[6,19], [9,27], [13,38], [18,54]]]
downsample_ratios: [32, 16, 8]
ide_thresh: 0.5
fg_thresh: 0.5
bg_thresh: 0.4
batch_size: 4
shuffle: true
drop_last: true
use_shared_memory: true
EvalMOTReader:
sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [480, 864]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {}
batch_size: 1
TestMOTReader:
inputs_def:
image_shape: [3, 480, 864]
sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [480, 864]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {}
batch_size: 1

View File

@@ -0,0 +1,20 @@
epoch: 30
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [15, 22]
use_warmup: True
- !ExpWarmup
steps: 1000
power: 4
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2

View File

@@ -0,0 +1,20 @@
epoch: 60
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [30, 44]
use_warmup: True
- !ExpWarmup
steps: 1000
power: 4
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2

View File

@@ -0,0 +1,47 @@
_BASE_: [
'../../datasets/mot.yml',
'../../runtime.yml',
'_base_/optimizer_30e.yml',
'_base_/jde_darknet53.yml',
'_base_/jde_reader_1088x608.yml',
]
weights: output/jde_darknet53_30e_1088x608/model_final
JDE:
detector: YOLOv3
reid: JDEEmbeddingHead
tracker: JDETracker
YOLOv3:
backbone: DarkNet
neck: YOLOv3FPN
yolo_head: YOLOv3Head
post_process: JDEBBoxPostProcess
for_mot: True
YOLOv3Head:
anchors: [[128,384], [180,540], [256,640], [512,640],
[32,96], [45,135], [64,192], [90,271],
[8,24], [11,34], [16,48], [23,68]]
anchor_masks: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
loss: JDEDetectionLoss
JDETracker:
det_thresh: 0.3
track_buffer: 30
min_box_area: 200
motion: KalmanFilter
JDEBBoxPostProcess:
decode:
name: JDEBox
conf_thresh: 0.5
downsample_ratio: 32
nms:
name: MultiClassNMS
keep_top_k: 500
score_threshold: 0.01
nms_threshold: 0.4
nms_top_k: 2000
normalized: true
return_index: true

View File

@@ -0,0 +1,47 @@
_BASE_: [
'../../datasets/mot.yml',
'../../runtime.yml',
'_base_/optimizer_30e.yml',
'_base_/jde_darknet53.yml',
'_base_/jde_reader_576x320.yml',
]
weights: output/jde_darknet53_30e_576x320/model_final
JDE:
detector: YOLOv3
reid: JDEEmbeddingHead
tracker: JDETracker
YOLOv3:
backbone: DarkNet
neck: YOLOv3FPN
yolo_head: YOLOv3Head
post_process: JDEBBoxPostProcess
for_mot: True
YOLOv3Head:
anchors: [[85,255], [120,360], [170,420], [340,420],
[21,64], [30,90], [43,128], [60,180],
[6,16], [8,23], [11,32], [16,45]]
anchor_masks: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
loss: JDEDetectionLoss
JDETracker:
det_thresh: 0.3
track_buffer: 30
min_box_area: 200
motion: KalmanFilter
JDEBBoxPostProcess:
decode:
name: JDEBox
conf_thresh: 0.5
downsample_ratio: 32
nms:
name: MultiClassNMS
keep_top_k: 500
score_threshold: 0.01
nms_threshold: 0.4
nms_top_k: 2000
normalized: true
return_index: true

View File

@@ -0,0 +1,47 @@
_BASE_: [
'../../datasets/mot.yml',
'../../runtime.yml',
'_base_/optimizer_30e.yml',
'_base_/jde_darknet53.yml',
'_base_/jde_reader_864x480.yml',
]
weights: output/jde_darknet53_30e_864x480/model_final
JDE:
detector: YOLOv3
reid: JDEEmbeddingHead
tracker: JDETracker
YOLOv3:
backbone: DarkNet
neck: YOLOv3FPN
yolo_head: YOLOv3Head
post_process: JDEBBoxPostProcess
for_mot: True
YOLOv3Head:
anchors: [[102,305], [143, 429], [203,508], [407,508],
[25,76], [36,107], [51,152], [71,215],
[6,19], [9,27], [13,38], [18,54]]
anchor_masks: [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
loss: JDEDetectionLoss
JDETracker:
det_thresh: 0.3
track_buffer: 30
min_box_area: 200
motion: KalmanFilter
JDEBBoxPostProcess:
decode:
name: JDEBox
conf_thresh: 0.5
downsample_ratio: 32
nms:
name: MultiClassNMS
keep_top_k: 500
score_threshold: 0.01
nms_threshold: 0.4
nms_top_k: 2000
normalized: true
return_index: true