更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1 @@
README_cn.md

View File

@@ -0,0 +1,135 @@
[English](README.md) | 简体中文
# 特色垂类跟踪模型
## 大规模行人跟踪 (Pedestrian Tracking)
行人跟踪的主要应用之一是交通监控。
[PathTrack](https://www.trace.ethz.ch/publications/2017/pathtrack/index.html)包含720个视频序列有着超过15000个行人的轨迹。包含了街景、舞蹈、体育运动、采访等各种场景的大部分是移动摄像头拍摄场景。该数据集只有Pedestrian一类标注作为跟踪任务。
[VisDrone](http://aiskyeye.com)是无人机视角拍摄的数据集是以俯视视角为主。该数据集涵盖不同位置取自中国数千个相距数千公里的14个不同城市、不同环境城市和乡村、不同物体行人、车辆、自行车等和不同密度稀疏和拥挤的场景。[VisDrone2019-MOT](https://github.com/VisDrone/VisDrone-Dataset)包含56个视频序列用于训练7个视频序列用于验证。此处针对VisDrone2019-MOT多目标跟踪数据集进行提取抽取出类别为pedestrian和people的数据组合成一个大的Pedestrian类别。
## 模型库
### FairMOT在各个数据集val-set上Pedestrian类别的结果
| 数据集 | 骨干网络 | 输入尺寸 | MOTA | IDF1 | FPS | 下载链接 | 配置文件 |
| :-------------| :-------- | :------- | :----: | :----: | :----: | :-----: |:------: |
| PathTrack | DLA-34 | 1088x608 | 44.9 | 59.3 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_pathtrack.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_pathtrack.yml) |
| VisDrone | DLA-34 | 1088x608 | 49.2 | 63.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml) |
| VisDrone | HRNetv2-W18| 1088x608 | 40.5 | 54.7 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian.yml) |
| VisDrone | HRNetv2-W18| 864x480 | 38.6 | 50.9 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_pedestrian.yml) |
| VisDrone | HRNetv2-W18| 576x320 | 30.6 | 47.2 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_pedestrian.yml) |
**注意:**
- FairMOT均使用DLA-34为骨干网络4个GPU进行训练每个GPU上batch size为6训练30个epoch。
## 数据集准备和处理
### 1、数据集处理代码说明
代码统一都在tools目录下
```
# visdrone
tools/visdrone/visdrone2mot.py: 生成visdrone_pedestrian据集
```
### 2、visdrone_pedestrian数据集处理
```
# 复制tool/visdrone/visdrone2mot.py到数据集目录下
# 生成visdrone_pedestrian MOT格式的数据抽取类别classes=1,2 (pedestrian, people)
<<--生成前目录-->>
├── VisDrone2019-MOT-val
│ ├── annotations
│ ├── sequences
│ ├── visdrone2mot.py
<<--生成后目录-->>
├── VisDrone2019-MOT-val
│ ├── annotations
│ ├── sequences
│ ├── visdrone2mot.py
│ ├── visdrone_pedestrian
│ │ ├── images
│ │ │ ├── train
│ │ │ ├── val
│ │ ├── labels_with_ids
│ │ │ ├── train
│ │ │ ├── val
# 执行
python visdrone2mot.py --transMot=True --data_name=visdrone_pedestrian --phase=val
python visdrone2mot.py --transMot=True --data_name=visdrone_pedestrian --phase=train
```
## 快速开始
### 1. 训练
使用2个GPU通过如下命令一键式启动训练
```bash
python -m paddle.distributed.launch --log_dir=./fairmot_dla34_30e_1088x608_visdrone_pedestrian/ --gpus 0,1 tools/train.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml
```
### 2. 评估
使用单张GPU通过如下命令一键式启动评估
```bash
# 使用PaddleDetection发布的权重
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams
# 使用训练保存的checkpoint
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=output/fairmot_dla34_30e_1088x608_visdrone_pedestrian/model_final.pdparams
```
### 3. 预测
使用单个GPU通过如下命令预测一个视频并保存为视频
```bash
# 预测一个视频
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams --video_file={your video name}.mp4 --save_videos
```
**注意:**
- 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`
### 4. 导出预测模型
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/pedestrian/fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams
```
### 5. 用导出的模型基于Python去预测
```bash
python deploy/pptracking/python/mot_jde_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608_visdrone_pedestrian --video_file={your video name}.mp4 --device=GPU --save_mot_txts
```
**注意:**
- 跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加`--save_mot_txts`表示保存跟踪结果的txt文件`--save_images`表示保存跟踪结果可视化图片。
- 跟踪结果txt文件每行信息是`frame,id,x1,y1,w,h,score,-1,-1,-1`
## 引用
```
@article{zhang2020fair,
title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
journal={arXiv preprint arXiv:2004.01888},
year={2020}
}
@INPROCEEDINGS{8237302,
author={S. {Manen} and M. {Gygli} and D. {Dai} and L. V. {Gool}},
booktitle={2017 IEEE International Conference on Computer Vision (ICCV)},
title={PathTrack: Fast Trajectory Annotation with Path Supervision},
year={2017},
volume={},
number={},
pages={290-299},
doi={10.1109/ICCV.2017.40},
ISSN={2380-7504},
month={Oct},}
@ARTICLE{9573394,
author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Detection and Tracking Meet Drones Challenge},
year={2021},
volume={},
number={},
pages={1-1},
doi={10.1109/TPAMI.2021.3119563}
}
```

View File

@@ -0,0 +1,26 @@
_BASE_: [
'../fairmot/fairmot_dla34_30e_1088x608.yml'
]
weights: output/fairmot_dla34_30e_1088x608_pathtrack/model_final
# for MOT training
TrainDataset:
!MOTDataSet
dataset_dir: dataset/mot
image_lists: ['pathtrack.train']
data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide']
# for MOT evaluation
# If you want to change the MOT evaluation dataset, please modify 'data_root'
EvalMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
data_root: pathtrack/images/test
keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT
# for MOT video inference
TestMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
keep_ori_im: True # set True if save visualization images or video

View File

@@ -0,0 +1,26 @@
_BASE_: [
'../fairmot/fairmot_dla34_30e_1088x608.yml'
]
weights: output/fairmot_dla34_30e_1088x608_visdrone_pedestrian/model_final
# for MOT training
TrainDataset:
!MOTDataSet
dataset_dir: dataset/mot
image_lists: ['visdrone_pedestrian.train']
data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide']
# for MOT evaluation
# If you want to change the MOT evaluation dataset, please modify 'data_root'
EvalMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
data_root: visdrone_pedestrian/images/val
keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT
# for MOT video inference
TestMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
keep_ori_im: True # set True if save visualization images or video

View File

@@ -0,0 +1,26 @@
_BASE_: [
'../fairmot/fairmot_hrnetv2_w18_dlafpn_30e_1088x608.yml'
]
weights: output/fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian/model_final
# for MOT training
TrainDataset:
!MOTDataSet
dataset_dir: dataset/mot
image_lists: ['visdrone_pedestrian.train']
data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide']
# for MOT evaluation
# If you want to change the MOT evaluation dataset, please modify 'data_root'
EvalMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
data_root: visdrone_pedestrian/images/val
keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT
# for MOT video inference
TestMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
keep_ori_im: True # set True if save visualization images or video

View File

@@ -0,0 +1,26 @@
_BASE_: [
'../fairmot/fairmot_hrnetv2_w18_dlafpn_30e_576x320.yml'
]
weights: output/fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_pedestrian/model_final
# for MOT training
TrainDataset:
!MOTDataSet
dataset_dir: dataset/mot
image_lists: ['visdrone_pedestrian.train']
data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide']
# for MOT evaluation
# If you want to change the MOT evaluation dataset, please modify 'data_root'
EvalMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
data_root: visdrone_pedestrian/images/val
keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT
# for MOT video inference
TestMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
keep_ori_im: True # set True if save visualization images or video

View File

@@ -0,0 +1,26 @@
_BASE_: [
'../fairmot/fairmot_hrnetv2_w18_dlafpn_30e_864x480.yml'
]
weights: output/fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_pedestrian/model_final
# for MOT training
TrainDataset:
!MOTDataSet
dataset_dir: dataset/mot
image_lists: ['visdrone_pedestrian.train']
data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide']
# for MOT evaluation
# If you want to change the MOT evaluation dataset, please modify 'data_root'
EvalMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
data_root: visdrone_pedestrian/images/val
keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT
# for MOT video inference
TestMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
keep_ori_im: True # set True if save visualization images or video

View File

@@ -0,0 +1,299 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import os
import os.path as osp
import cv2
import argparse
import numpy as np
import random
# The object category indicates the type of annotated object,
# (i.e., ignored regions(0), pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10),others(11))
# Extract single class or multi class
isExtractMultiClass = False
# These sequences are excluded because there are too few pedestrians
exclude_seq = [
"uav0000117_02622_v", "uav0000182_00000_v", "uav0000268_05773_v",
"uav0000305_00000_v"
]
def mkdir_if_missing(d):
if not osp.exists(d):
os.makedirs(d)
def genGtFile(seqPath, outPath, classes=[]):
id_idx = 0
old_idx = -1
with open(seqPath, 'r') as singleSeqFile:
motLine = []
allLines = singleSeqFile.readlines()
for line in allLines:
line = line.replace('\n', '')
line = line.split(',')
# exclude occlusion!='2'
if line[-1] != '2' and line[7] in classes:
if old_idx != int(line[1]):
id_idx += 1
old_idx = int(line[1])
newLine = line[0:6]
newLine[1] = str(id_idx)
newLine.append('1')
if (len(classes) > 1 and isExtractMultiClass):
class_index = str(classes.index(line[7]) + 1)
newLine.append(class_index)
else:
newLine.append('1') # use permanent class '1'
newLine.append('1')
motLine.append(newLine)
mkdir_if_missing(outPath)
gtFilePath = osp.join(outPath, 'gt.txt')
with open(gtFilePath, 'w') as gtFile:
motLine = list(map(lambda x: str.join(',', x), motLine))
motLineStr = str.join('\n', motLine)
gtFile.write(motLineStr)
def genSeqInfo(img1Path, seqName):
imgPaths = glob.glob(img1Path + '/*.jpg')
seqLength = len(imgPaths)
if seqLength > 0:
image1 = cv2.imread(imgPaths[0])
imgHeight = image1.shape[0]
imgWidth = image1.shape[1]
else:
imgHeight = 0
imgWidth = 0
seqInfoStr = f'''[Sequence]\nname={seqName}\nimDir=img1\nframeRate=30\nseqLength={seqLength}\nimWidth={imgWidth}\nimHeight={imgHeight}\nimExt=.jpg'''
seqInfoPath = img1Path.replace('/img1', '')
with open(seqInfoPath + '/seqinfo.ini', 'w') as seqFile:
seqFile.write(seqInfoStr)
def copyImg(img1Path, gtTxtPath, outputFileName):
with open(gtTxtPath, 'r') as gtFile:
allLines = gtFile.readlines()
imgList = []
for line in allLines:
imgIdx = int(line.split(',')[0])
if imgIdx not in imgList:
imgList.append(imgIdx)
seqName = gtTxtPath.replace('./{}/'.format(outputFileName),
'').replace('/gt/gt.txt', '')
sourceImgPath = osp.join('./sequences', seqName,
'{:07d}.jpg'.format(imgIdx))
os.system(f'cp {sourceImgPath} {img1Path}')
def genMotLabels(datasetPath, outputFileName, classes=['2']):
mkdir_if_missing(osp.join(datasetPath, outputFileName))
annotationsPath = osp.join(datasetPath, 'annotations')
annotationsList = glob.glob(osp.join(annotationsPath, '*.txt'))
for annotationPath in annotationsList:
seqName = annotationPath.split('/')[-1].replace('.txt', '')
if seqName in exclude_seq:
continue
mkdir_if_missing(osp.join(datasetPath, outputFileName, seqName, 'gt'))
mkdir_if_missing(osp.join(datasetPath, outputFileName, seqName, 'img1'))
genGtFile(annotationPath,
osp.join(datasetPath, outputFileName, seqName, 'gt'), classes)
img1Path = osp.join(datasetPath, outputFileName, seqName, 'img1')
gtTxtPath = osp.join(datasetPath, outputFileName, seqName, 'gt/gt.txt')
copyImg(img1Path, gtTxtPath, outputFileName)
genSeqInfo(img1Path, seqName)
def deleteFileWhichImg1IsEmpty(mot16Path, dataType='train'):
path = mot16Path
data_images_train = osp.join(path, 'images', f'{dataType}')
data_images_train_seqs = glob.glob(data_images_train + '/*')
if (len(data_images_train_seqs) == 0):
print('dataset is empty!')
for data_images_train_seq in data_images_train_seqs:
data_images_train_seq_img1 = osp.join(data_images_train_seq, 'img1')
if len(glob.glob(data_images_train_seq_img1 + '/*.jpg')) == 0:
print(f"os.system(rm -rf {data_images_train_seq})")
os.system(f'rm -rf {data_images_train_seq}')
def formatMot16Path(dataPath, pathType='train'):
train_path = osp.join(dataPath, 'images', pathType)
mkdir_if_missing(train_path)
os.system(f'mv {dataPath}/* {train_path}')
def VisualGt(dataPath, phase='train'):
seqList = sorted(glob.glob(osp.join(dataPath, 'images', phase) + '/*'))
seqIndex = random.randint(0, len(seqList) - 1)
seqPath = seqList[seqIndex]
gt_path = osp.join(seqPath, 'gt', 'gt.txt')
img_list_path = sorted(glob.glob(osp.join(seqPath, 'img1', '*.jpg')))
imgIndex = random.randint(0, len(img_list_path))
img_Path = img_list_path[imgIndex]
frame_value = int(img_Path.split('/')[-1].replace('.jpg', ''))
gt_value = np.loadtxt(gt_path, dtype=int, delimiter=',')
gt_value = gt_value[gt_value[:, 0] == frame_value]
get_list = gt_value.tolist()
img = cv2.imread(img_Path)
colors = [[255, 0, 0], [255, 255, 0], [255, 0, 255], [0, 255, 0],
[0, 255, 255], [0, 0, 255]]
for seq, _id, pl, pt, w, h, _, bbox_class, _ in get_list:
cv2.putText(img,
str(bbox_class), (pl, pt), cv2.FONT_HERSHEY_PLAIN, 2,
colors[bbox_class - 1])
cv2.rectangle(
img, (pl, pt), (pl + w, pt + h),
colors[bbox_class - 1],
thickness=2)
cv2.imwrite('testGt.jpg', img)
def VisualDataset(datasetPath, phase='train', seqName='', frameId=1):
trainPath = osp.join(datasetPath, 'labels_with_ids', phase)
seq1Paths = osp.join(trainPath, seqName)
seq_img1_path = osp.join(seq1Paths, 'img1')
label_with_idPath = osp.join(seq_img1_path, '%07d' % frameId) + '.txt'
image_path = label_with_idPath.replace('labels_with_ids', 'images').replace(
'.txt', '.jpg')
seqInfoPath = str.join('/', image_path.split('/')[:-2])
seqInfoPath = seqInfoPath + '/seqinfo.ini'
seq_info = open(seqInfoPath).read()
width = int(seq_info[seq_info.find('imWidth=') + 8:seq_info.find(
'\nimHeight')])
height = int(seq_info[seq_info.find('imHeight=') + 9:seq_info.find(
'\nimExt')])
with open(label_with_idPath, 'r') as label:
allLines = label.readlines()
images = cv2.imread(image_path)
for line in allLines:
line = line.split(' ')
line = list(map(lambda x: float(x), line))
c1, c2, w, h = line[2:6]
x1 = c1 - w / 2
x2 = c2 - h / 2
x3 = c1 + w / 2
x4 = c2 + h / 2
cv2.rectangle(
images, (int(x1 * width), int(x2 * height)),
(int(x3 * width), int(x4 * height)), (255, 0, 0),
thickness=2)
cv2.imwrite('test.jpg', images)
def gen_image_list(dataPath, datType):
inputPath = f'{dataPath}/images/{datType}'
pathList = glob.glob(inputPath + '/*')
pathList = sorted(pathList)
allImageList = []
for pathSingle in pathList:
imgList = sorted(glob.glob(osp.join(pathSingle, 'img1', '*.jpg')))
for imgPath in imgList:
allImageList.append(imgPath)
with open(f'{dataPath}.{datType}', 'w') as image_list_file:
allImageListStr = str.join('\n', allImageList)
image_list_file.write(allImageListStr)
def gen_labels_mot(MOT_data, phase='train'):
seq_root = './{}/images/{}'.format(MOT_data, phase)
label_root = './{}/labels_with_ids/{}'.format(MOT_data, phase)
mkdir_if_missing(label_root)
seqs = [s for s in os.listdir(seq_root)]
print('seqs => ', seqs)
tid_curr = 0
tid_last = -1
for seq in seqs:
seq_info = open(osp.join(seq_root, seq, 'seqinfo.ini')).read()
seq_width = int(seq_info[seq_info.find('imWidth=') + 8:seq_info.find(
'\nimHeight')])
seq_height = int(seq_info[seq_info.find('imHeight=') + 9:seq_info.find(
'\nimExt')])
gt_txt = osp.join(seq_root, seq, 'gt', 'gt.txt')
gt = np.loadtxt(gt_txt, dtype=np.float64, delimiter=',')
seq_label_root = osp.join(label_root, seq, 'img1')
mkdir_if_missing(seq_label_root)
for fid, tid, x, y, w, h, mark, label, _ in gt:
# if mark == 0 or not label == 1:
# continue
fid = int(fid)
tid = int(tid)
if not tid == tid_last:
tid_curr += 1
tid_last = tid
x += w / 2
y += h / 2
label_fpath = osp.join(seq_label_root, '{:07d}.txt'.format(fid))
label_str = '0 {:d} {:.6f} {:.6f} {:.6f} {:.6f}\n'.format(
tid_curr, x / seq_width, y / seq_height, w / seq_width,
h / seq_height)
with open(label_fpath, 'a') as f:
f.write(label_str)
def parse_arguments():
parser = argparse.ArgumentParser(description='input method')
parser.add_argument("--transMot", type=bool, default=False)
parser.add_argument("--genMot", type=bool, default=False)
parser.add_argument("--formatMotPath", type=bool, default=False)
parser.add_argument("--deleteEmpty", type=bool, default=False)
parser.add_argument("--genLabelsMot", type=bool, default=False)
parser.add_argument("--genImageList", type=bool, default=False)
parser.add_argument("--visualImg", type=bool, default=False)
parser.add_argument("--visualGt", type=bool, default=False)
parser.add_argument("--data_name", type=str, default='visdrone_pedestrian')
parser.add_argument("--phase", type=str, default='train')
parser.add_argument(
"--classes", type=str, default='1,2') # pedestrian and people
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
classes = args.classes.split(',')
datasetPath = './'
dataName = args.data_name
phase = args.phase
if args.transMot:
genMotLabels(datasetPath, dataName, classes)
formatMot16Path(dataName, pathType=phase)
mot16Path = f'./{dataName}'
deleteFileWhichImg1IsEmpty(mot16Path, dataType=phase)
gen_labels_mot(dataName, phase=phase)
gen_image_list(dataName, phase)
if args.genMot:
genMotLabels(datasetPath, dataName, classes)
if args.formatMotPath:
formatMot16Path(dataName, pathType=phase)
if args.deleteEmpty:
mot16Path = f'./{dataName}'
deleteFileWhichImg1IsEmpty(mot16Path, dataType=phase)
if args.genLabelsMot:
gen_labels_mot(dataName, phase=phase)
if args.genImageList:
gen_image_list(dataName, phase)
if args.visualGt:
VisualGt(f'./{dataName}', phase)
if args.visualImg:
seqName = 'uav0000137_00458_v'
frameId = 43
VisualDataset(
f'./{dataName}', phase=phase, seqName=seqName, frameId=frameId)