更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,299 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import os
import os.path as osp
import cv2
import argparse
import numpy as np
import random
# The object category indicates the type of annotated object,
# (i.e., ignored regions(0), pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10),others(11))
# Extract single class or multi class
isExtractMultiClass = False
# These sequences are excluded because there are too few pedestrians
exclude_seq = [
"uav0000117_02622_v", "uav0000182_00000_v", "uav0000268_05773_v",
"uav0000305_00000_v"
]
def mkdir_if_missing(d):
if not osp.exists(d):
os.makedirs(d)
def genGtFile(seqPath, outPath, classes=[]):
id_idx = 0
old_idx = -1
with open(seqPath, 'r') as singleSeqFile:
motLine = []
allLines = singleSeqFile.readlines()
for line in allLines:
line = line.replace('\n', '')
line = line.split(',')
# exclude occlusion!='2'
if line[-1] != '2' and line[7] in classes:
if old_idx != int(line[1]):
id_idx += 1
old_idx = int(line[1])
newLine = line[0:6]
newLine[1] = str(id_idx)
newLine.append('1')
if (len(classes) > 1 and isExtractMultiClass):
class_index = str(classes.index(line[7]) + 1)
newLine.append(class_index)
else:
newLine.append('1') # use permanent class '1'
newLine.append('1')
motLine.append(newLine)
mkdir_if_missing(outPath)
gtFilePath = osp.join(outPath, 'gt.txt')
with open(gtFilePath, 'w') as gtFile:
motLine = list(map(lambda x: str.join(',', x), motLine))
motLineStr = str.join('\n', motLine)
gtFile.write(motLineStr)
def genSeqInfo(img1Path, seqName):
imgPaths = glob.glob(img1Path + '/*.jpg')
seqLength = len(imgPaths)
if seqLength > 0:
image1 = cv2.imread(imgPaths[0])
imgHeight = image1.shape[0]
imgWidth = image1.shape[1]
else:
imgHeight = 0
imgWidth = 0
seqInfoStr = f'''[Sequence]\nname={seqName}\nimDir=img1\nframeRate=30\nseqLength={seqLength}\nimWidth={imgWidth}\nimHeight={imgHeight}\nimExt=.jpg'''
seqInfoPath = img1Path.replace('/img1', '')
with open(seqInfoPath + '/seqinfo.ini', 'w') as seqFile:
seqFile.write(seqInfoStr)
def copyImg(img1Path, gtTxtPath, outputFileName):
with open(gtTxtPath, 'r') as gtFile:
allLines = gtFile.readlines()
imgList = []
for line in allLines:
imgIdx = int(line.split(',')[0])
if imgIdx not in imgList:
imgList.append(imgIdx)
seqName = gtTxtPath.replace('./{}/'.format(outputFileName),
'').replace('/gt/gt.txt', '')
sourceImgPath = osp.join('./sequences', seqName,
'{:07d}.jpg'.format(imgIdx))
os.system(f'cp {sourceImgPath} {img1Path}')
def genMotLabels(datasetPath, outputFileName, classes=['2']):
mkdir_if_missing(osp.join(datasetPath, outputFileName))
annotationsPath = osp.join(datasetPath, 'annotations')
annotationsList = glob.glob(osp.join(annotationsPath, '*.txt'))
for annotationPath in annotationsList:
seqName = annotationPath.split('/')[-1].replace('.txt', '')
if seqName in exclude_seq:
continue
mkdir_if_missing(osp.join(datasetPath, outputFileName, seqName, 'gt'))
mkdir_if_missing(osp.join(datasetPath, outputFileName, seqName, 'img1'))
genGtFile(annotationPath,
osp.join(datasetPath, outputFileName, seqName, 'gt'), classes)
img1Path = osp.join(datasetPath, outputFileName, seqName, 'img1')
gtTxtPath = osp.join(datasetPath, outputFileName, seqName, 'gt/gt.txt')
copyImg(img1Path, gtTxtPath, outputFileName)
genSeqInfo(img1Path, seqName)
def deleteFileWhichImg1IsEmpty(mot16Path, dataType='train'):
path = mot16Path
data_images_train = osp.join(path, 'images', f'{dataType}')
data_images_train_seqs = glob.glob(data_images_train + '/*')
if (len(data_images_train_seqs) == 0):
print('dataset is empty!')
for data_images_train_seq in data_images_train_seqs:
data_images_train_seq_img1 = osp.join(data_images_train_seq, 'img1')
if len(glob.glob(data_images_train_seq_img1 + '/*.jpg')) == 0:
print(f"os.system(rm -rf {data_images_train_seq})")
os.system(f'rm -rf {data_images_train_seq}')
def formatMot16Path(dataPath, pathType='train'):
train_path = osp.join(dataPath, 'images', pathType)
mkdir_if_missing(train_path)
os.system(f'mv {dataPath}/* {train_path}')
def VisualGt(dataPath, phase='train'):
seqList = sorted(glob.glob(osp.join(dataPath, 'images', phase) + '/*'))
seqIndex = random.randint(0, len(seqList) - 1)
seqPath = seqList[seqIndex]
gt_path = osp.join(seqPath, 'gt', 'gt.txt')
img_list_path = sorted(glob.glob(osp.join(seqPath, 'img1', '*.jpg')))
imgIndex = random.randint(0, len(img_list_path))
img_Path = img_list_path[imgIndex]
frame_value = int(img_Path.split('/')[-1].replace('.jpg', ''))
gt_value = np.loadtxt(gt_path, dtype=int, delimiter=',')
gt_value = gt_value[gt_value[:, 0] == frame_value]
get_list = gt_value.tolist()
img = cv2.imread(img_Path)
colors = [[255, 0, 0], [255, 255, 0], [255, 0, 255], [0, 255, 0],
[0, 255, 255], [0, 0, 255]]
for seq, _id, pl, pt, w, h, _, bbox_class, _ in get_list:
cv2.putText(img,
str(bbox_class), (pl, pt), cv2.FONT_HERSHEY_PLAIN, 2,
colors[bbox_class - 1])
cv2.rectangle(
img, (pl, pt), (pl + w, pt + h),
colors[bbox_class - 1],
thickness=2)
cv2.imwrite('testGt.jpg', img)
def VisualDataset(datasetPath, phase='train', seqName='', frameId=1):
trainPath = osp.join(datasetPath, 'labels_with_ids', phase)
seq1Paths = osp.join(trainPath, seqName)
seq_img1_path = osp.join(seq1Paths, 'img1')
label_with_idPath = osp.join(seq_img1_path, '%07d' % frameId) + '.txt'
image_path = label_with_idPath.replace('labels_with_ids', 'images').replace(
'.txt', '.jpg')
seqInfoPath = str.join('/', image_path.split('/')[:-2])
seqInfoPath = seqInfoPath + '/seqinfo.ini'
seq_info = open(seqInfoPath).read()
width = int(seq_info[seq_info.find('imWidth=') + 8:seq_info.find(
'\nimHeight')])
height = int(seq_info[seq_info.find('imHeight=') + 9:seq_info.find(
'\nimExt')])
with open(label_with_idPath, 'r') as label:
allLines = label.readlines()
images = cv2.imread(image_path)
for line in allLines:
line = line.split(' ')
line = list(map(lambda x: float(x), line))
c1, c2, w, h = line[2:6]
x1 = c1 - w / 2
x2 = c2 - h / 2
x3 = c1 + w / 2
x4 = c2 + h / 2
cv2.rectangle(
images, (int(x1 * width), int(x2 * height)),
(int(x3 * width), int(x4 * height)), (255, 0, 0),
thickness=2)
cv2.imwrite('test.jpg', images)
def gen_image_list(dataPath, datType):
inputPath = f'{dataPath}/images/{datType}'
pathList = glob.glob(inputPath + '/*')
pathList = sorted(pathList)
allImageList = []
for pathSingle in pathList:
imgList = sorted(glob.glob(osp.join(pathSingle, 'img1', '*.jpg')))
for imgPath in imgList:
allImageList.append(imgPath)
with open(f'{dataPath}.{datType}', 'w') as image_list_file:
allImageListStr = str.join('\n', allImageList)
image_list_file.write(allImageListStr)
def gen_labels_mot(MOT_data, phase='train'):
seq_root = './{}/images/{}'.format(MOT_data, phase)
label_root = './{}/labels_with_ids/{}'.format(MOT_data, phase)
mkdir_if_missing(label_root)
seqs = [s for s in os.listdir(seq_root)]
print('seqs => ', seqs)
tid_curr = 0
tid_last = -1
for seq in seqs:
seq_info = open(osp.join(seq_root, seq, 'seqinfo.ini')).read()
seq_width = int(seq_info[seq_info.find('imWidth=') + 8:seq_info.find(
'\nimHeight')])
seq_height = int(seq_info[seq_info.find('imHeight=') + 9:seq_info.find(
'\nimExt')])
gt_txt = osp.join(seq_root, seq, 'gt', 'gt.txt')
gt = np.loadtxt(gt_txt, dtype=np.float64, delimiter=',')
seq_label_root = osp.join(label_root, seq, 'img1')
mkdir_if_missing(seq_label_root)
for fid, tid, x, y, w, h, mark, label, _ in gt:
# if mark == 0 or not label == 1:
# continue
fid = int(fid)
tid = int(tid)
if not tid == tid_last:
tid_curr += 1
tid_last = tid
x += w / 2
y += h / 2
label_fpath = osp.join(seq_label_root, '{:07d}.txt'.format(fid))
label_str = '0 {:d} {:.6f} {:.6f} {:.6f} {:.6f}\n'.format(
tid_curr, x / seq_width, y / seq_height, w / seq_width,
h / seq_height)
with open(label_fpath, 'a') as f:
f.write(label_str)
def parse_arguments():
parser = argparse.ArgumentParser(description='input method')
parser.add_argument("--transMot", type=bool, default=False)
parser.add_argument("--genMot", type=bool, default=False)
parser.add_argument("--formatMotPath", type=bool, default=False)
parser.add_argument("--deleteEmpty", type=bool, default=False)
parser.add_argument("--genLabelsMot", type=bool, default=False)
parser.add_argument("--genImageList", type=bool, default=False)
parser.add_argument("--visualImg", type=bool, default=False)
parser.add_argument("--visualGt", type=bool, default=False)
parser.add_argument("--data_name", type=str, default='visdrone_pedestrian')
parser.add_argument("--phase", type=str, default='train')
parser.add_argument(
"--classes", type=str, default='1,2') # pedestrian and people
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
classes = args.classes.split(',')
datasetPath = './'
dataName = args.data_name
phase = args.phase
if args.transMot:
genMotLabels(datasetPath, dataName, classes)
formatMot16Path(dataName, pathType=phase)
mot16Path = f'./{dataName}'
deleteFileWhichImg1IsEmpty(mot16Path, dataType=phase)
gen_labels_mot(dataName, phase=phase)
gen_image_list(dataName, phase)
if args.genMot:
genMotLabels(datasetPath, dataName, classes)
if args.formatMotPath:
formatMot16Path(dataName, pathType=phase)
if args.deleteEmpty:
mot16Path = f'./{dataName}'
deleteFileWhichImg1IsEmpty(mot16Path, dataType=phase)
if args.genLabelsMot:
gen_labels_mot(dataName, phase=phase)
if args.genImageList:
gen_image_list(dataName, phase)
if args.visualGt:
VisualGt(f'./{dataName}', phase)
if args.visualImg:
seqName = 'uav0000137_00458_v'
frameId = 43
VisualDataset(
f'./{dataName}', phase=phase, seqName=seqName, frameId=frameId)