更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,386 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import os
import os.path as osp
import cv2
import random
import numpy as np
import argparse
import tqdm
import json
def mkdir_if_missing(d):
if not osp.exists(d):
os.makedirs(d)
def bdd2mot_tracking(img_dir, label_dir, save_img_dir, save_label_dir):
label_jsons = os.listdir(label_dir)
for label_json in tqdm(label_jsons):
with open(os.path.join(label_dir, label_json)) as f:
labels_json = json.load(f)
for label_json in labels_json:
img_name = label_json['name']
video_name = label_json['videoName']
labels = label_json['labels']
txt_string = ""
for label in labels:
category = label['category']
x1 = label['box2d']['x1']
x2 = label['box2d']['x2']
y1 = label['box2d']['y1']
y2 = label['box2d']['y2']
width = x2 - x1
height = y2 - y1
x_center = (x1 + x2) / 2. / args.width
y_center = (y1 + y2) / 2. / args.height
width /= args.width
height /= args.height
identity = int(label['id'])
# [class] [identity] [x_center] [y_center] [width] [height]
txt_string += "{} {} {} {} {} {}\n".format(
attr_id_dict[category], identity, x_center, y_center,
width, height)
fn_label = os.path.join(save_label_dir, img_name[:-4] + '.txt')
source_img = os.path.join(img_dir, video_name, img_name)
target_img = os.path.join(save_img_dir, img_name)
with open(fn_label, 'w') as f:
f.write(txt_string)
os.system('cp {} {}'.format(source_img, target_img))
def transBbox(bbox):
# bbox --> cx cy w h
bbox = list(map(lambda x: float(x), bbox))
bbox[0] = (bbox[0] - bbox[2] / 2) * 1280
bbox[1] = (bbox[1] - bbox[3] / 2) * 720
bbox[2] = bbox[2] * 1280
bbox[3] = bbox[3] * 720
bbox = list(map(lambda x: str(x), bbox))
return bbox
def genSingleImageMot(inputPath, classes=[]):
labelPaths = glob.glob(inputPath + '/*.txt')
labelPaths = sorted(labelPaths)
allLines = []
result = {}
for labelPath in labelPaths:
frame = str(int(labelPath.split('-')[-1].replace('.txt', '')))
with open(labelPath, 'r') as labelPathFile:
lines = labelPathFile.readlines()
for line in lines:
line = line.replace('\n', '')
lineArray = line.split(' ')
if len(classes) > 0:
if lineArray[0] in classes:
lineArray.append(frame)
allLines.append(lineArray)
else:
lineArray.append(frame)
allLines.append(lineArray)
resultMap = {}
for line in allLines:
if line[1] not in resultMap.keys():
resultMap[line[1]] = []
resultMap[line[1]].append(line)
mot_gt = []
id_idx = 0
for rid in resultMap.keys():
id_idx += 1
for id_line in resultMap[rid]:
mot_line = []
mot_line.append(id_line[-1])
mot_line.append(str(id_idx))
id_line_temp = transBbox(id_line[2:6])
mot_line.extend(id_line_temp)
mot_line.append('1') # origin class: id_line[0]
mot_line.append('1') # permanent class => 1
mot_line.append('1')
mot_gt.append(mot_line)
result = list(map(lambda line: str.join(',', line), mot_gt))
resultStr = str.join('\n', result)
return resultStr
def writeGt(inputPath, outPath, classes=[]):
singleImageResult = genSingleImageMot(inputPath, classes=classes)
outPathFile = outPath + '/gt.txt'
mkdir_if_missing(outPath)
with open(outPathFile, 'w') as gtFile:
gtFile.write(singleImageResult)
def genSeqInfo(seqInfoPath):
name = seqInfoPath.split('/')[-2]
img1Path = osp.join(str.join('/', seqInfoPath.split('/')[0:-1]), 'img1')
seqLength = len(glob.glob(img1Path + '/*.jpg'))
seqInfoStr = f'''[Sequence]\nname={name}\nimDir=img1\nframeRate=30\nseqLength={seqLength}\nimWidth=1280\nimHeight=720\nimExt=.jpg'''
with open(seqInfoPath, 'w') as seqFile:
seqFile.write(seqInfoStr)
def genMotGt(dataDir, classes=[]):
seqLists = sorted(glob.glob(dataDir))
for seqList in seqLists:
inputPath = osp.join(seqList, 'img1')
outputPath = seqList.replace('labels_with_ids', 'images')
outputPath = osp.join(outputPath, 'gt')
mkdir_if_missing(outputPath)
print('processing...', outputPath)
writeGt(inputPath, outputPath, classes=classes)
seqList = seqList.replace('labels_with_ids', 'images')
seqInfoPath = osp.join(seqList, 'seqinfo.ini')
genSeqInfo(seqInfoPath)
def updateSeqInfo(dataDir, phase):
seqPath = osp.join(dataDir, 'labels_with_ids', phase)
seqList = glob.glob(seqPath + '/*')
for seqName in seqList:
print('seqName=>', seqName)
seqName_img1_dir = osp.join(seqName, 'img1')
txtLength = glob.glob(seqName_img1_dir + '/*.txt')
name = seqName.split('/')[-1].replace('.jpg', '').replace('.txt', '')
seqLength = len(txtLength)
seqInfoStr = f'''[Sequence]\nname={name}\nimDir=img1\nframeRate=30\nseqLength={seqLength}\nimWidth=1280\nimHeight=720\nimExt=.jpg'''
seqInfoPath = seqName_img1_dir.replace('labels_with_ids', 'images')
seqInfoPath = seqInfoPath.replace('/img1', '')
seqInfoPath = seqInfoPath + '/seqinfo.ini'
with open(seqInfoPath, 'w') as seqFile:
seqFile.write(seqInfoStr)
def VisualDataset(datasetPath, phase='train', seqName='', frameId=1):
trainPath = osp.join(datasetPath, 'labels_with_ids', phase)
seq1Paths = osp.join(trainPath, seqName)
seq_img1_path = osp.join(seq1Paths, 'img1')
label_with_idPath = osp.join(seq_img1_path, seqName + '-' + '%07d' %
frameId) + '.txt'
image_path = label_with_idPath.replace('labels_with_ids', 'images').replace(
'.txt', '.jpg')
seqInfoPath = str.join('/', image_path.split('/')[:-2])
seqInfoPath = seqInfoPath + '/seqinfo.ini'
seq_info = open(seqInfoPath).read()
width = int(seq_info[seq_info.find('imWidth=') + 8:seq_info.find(
'\nimHeight')])
height = int(seq_info[seq_info.find('imHeight=') + 9:seq_info.find(
'\nimExt')])
with open(label_with_idPath, 'r') as label:
allLines = label.readlines()
images = cv2.imread(image_path)
print('image_path => ', image_path)
for line in allLines:
line = line.split(' ')
line = list(map(lambda x: float(x), line))
c1, c2, w, h = line[2:6]
x1 = c1 - w / 2
x2 = c2 - h / 2
x3 = c1 + w / 2
x4 = c2 + h / 2
cv2.rectangle(
images, (int(x1 * width), int(x2 * height)),
(int(x3 * width), int(x4 * height)), (255, 0, 0),
thickness=2)
cv2.imwrite('test.jpg', images)
def VisualGt(dataPath, phase='train'):
seqList = sorted(glob.glob(osp.join(dataPath, 'images', phase) + '/*'))
seqIndex = random.randint(0, len(seqList) - 1)
seqPath = seqList[seqIndex]
gt_path = osp.join(seqPath, 'gt', 'gt.txt')
img_list_path = sorted(glob.glob(osp.join(seqPath, 'img1', '*.jpg')))
imgIndex = random.randint(0, len(img_list_path))
img_Path = img_list_path[imgIndex]
frame_value = img_Path.split('/')[-1].replace('.jpg', '')
frame_value = frame_value.split('-')[-1]
frame_value = int(frame_value)
seqNameStr = img_Path.split('/')[-1].replace('.jpg', '').replace('img', '')
frame_value = int(seqNameStr.split('-')[-1])
print('frame_value => ', frame_value)
gt_value = np.loadtxt(gt_path, dtype=float, delimiter=',')
gt_value = gt_value[gt_value[:, 0] == frame_value]
get_list = gt_value.tolist()
img = cv2.imread(img_Path)
colors = [[255, 0, 0], [255, 255, 0], [255, 0, 255], [0, 255, 0],
[0, 255, 255], [0, 0, 255]]
for seq, _id, pl, pt, w, h, _, bbox_class, _ in get_list:
pl, pt, w, h = int(pl), int(pt), int(w), int(h)
print('pl,pt,w,h => ', pl, pt, w, h)
cv2.putText(img,
str(bbox_class), (pl, pt), cv2.FONT_HERSHEY_PLAIN, 2,
colors[int(bbox_class - 1)])
cv2.rectangle(
img, (pl, pt), (pl + w, pt + h),
colors[int(bbox_class - 1)],
thickness=2)
cv2.imwrite('testGt.jpg', img)
print(seqPath, frame_value)
return seqPath.split('/')[-1], frame_value
def gen_image_list(dataPath, datType):
inputPath = f'{dataPath}/labels_with_ids/{datType}'
pathList = sorted(glob.glob(inputPath + '/*'))
print(pathList)
allImageList = []
for pathSingle in pathList:
imgList = sorted(glob.glob(osp.join(pathSingle, 'img1', '*.txt')))
for imgPath in imgList:
imgPath = imgPath.replace('labels_with_ids', 'images').replace(
'.txt', '.jpg')
allImageList.append(imgPath)
with open(f'{dataPath}.{datType}', 'w') as image_list_file:
allImageListStr = str.join('\n', allImageList)
image_list_file.write(allImageListStr)
def formatOrigin(datapath, phase):
label_with_idPath = osp.join(datapath, 'labels_with_ids', phase)
print(label_with_idPath)
for txtList in sorted(glob.glob(label_with_idPath + '/*.txt')):
print(txtList)
seqName = txtList.split('/')[-1]
seqName = str.join('-', seqName.split('-')[0:-1]).replace('.txt', '')
seqPath = osp.join(label_with_idPath, seqName, 'img1')
mkdir_if_missing(seqPath)
os.system(f'mv {txtList} {seqPath}')
def copyImg(fromRootPath, toRootPath, phase):
fromPath = osp.join(fromRootPath, 'images', phase)
toPathSeqPath = osp.join(toRootPath, 'labels_with_ids', phase)
seqList = sorted(glob.glob(toPathSeqPath + '/*'))
for seqPath in seqList:
seqName = seqPath.split('/')[-1]
imgTxtList = sorted(glob.glob(osp.join(seqPath, 'img1') + '/*.txt'))
img_toPathSeqPath = osp.join(seqPath, 'img1')
img_toPathSeqPath = img_toPathSeqPath.replace('labels_with_ids',
'images')
mkdir_if_missing(img_toPathSeqPath)
for imgTxt in imgTxtList:
imgName = imgTxt.split('/')[-1].replace('.txt', '.jpg')
imgfromPath = osp.join(fromPath, seqName, imgName)
print(f'cp {imgfromPath} {img_toPathSeqPath}')
os.system(f'cp {imgfromPath} {img_toPathSeqPath}')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='BDD100K to MOT format')
parser.add_argument("--data_path", default='bdd100k')
parser.add_argument("--phase", default='train')
parser.add_argument("--classes", default='2,3,4,9,10')
parser.add_argument("--img_dir", default="bdd100k/images/track/")
parser.add_argument("--label_dir", default="bdd100k/labels/box_track_20/")
parser.add_argument("--save_path", default="bdd100kmot_vehicle")
parser.add_argument("--height", default=720)
parser.add_argument("--width", default=1280)
args = parser.parse_args()
attr_dict = dict()
attr_dict["categories"] = [{
"supercategory": "none",
"id": 0,
"name": "pedestrian"
}, {
"supercategory": "none",
"id": 1,
"name": "rider"
}, {
"supercategory": "none",
"id": 2,
"name": "car"
}, {
"supercategory": "none",
"id": 3,
"name": "truck"
}, {
"supercategory": "none",
"id": 4,
"name": "bus"
}, {
"supercategory": "none",
"id": 5,
"name": "train"
}, {
"supercategory": "none",
"id": 6,
"name": "motorcycle"
}, {
"supercategory": "none",
"id": 7,
"name": "bicycle"
}, {
"supercategory": "none",
"id": 8,
"name": "other person"
}, {
"supercategory": "none",
"id": 9,
"name": "trailer"
}, {
"supercategory": "none",
"id": 10,
"name": "other vehicle"
}]
attr_id_dict = {i['name']: i['id'] for i in attr_dict['categories']}
# create bdd100kmot_vehicle training set in MOT format
print('Loading and converting training set...')
train_img_dir = os.path.join(args.img_dir, 'train')
train_label_dir = os.path.join(args.label_dir, 'train')
save_img_dir = os.path.join(args.save_path, 'images', 'train')
save_label_dir = os.path.join(args.save_path, 'labels_with_ids', 'train')
if not os.path.exists(save_img_dir): os.makedirs(save_img_dir)
if not os.path.exists(save_label_dir): os.makedirs(save_label_dir)
bdd2mot_tracking(train_img_dir, train_label_dir, save_img_dir,
save_label_dir)
# create bdd100kmot_vehicle validation set in MOT format
print('Loading and converting validation set...')
val_img_dir = os.path.join(args.img_dir, 'val')
val_label_dir = os.path.join(args.label_dir, 'val')
save_img_dir = os.path.join(args.save_path, 'images', 'val')
save_label_dir = os.path.join(args.save_path, 'labels_with_ids', 'val')
if not os.path.exists(save_img_dir): os.makedirs(save_img_dir)
if not os.path.exists(save_label_dir): os.makedirs(save_label_dir)
bdd2mot_tracking(val_img_dir, val_label_dir, save_img_dir, save_label_dir)
# gen gt file
dataPath = args.data_path
phase = args.phase
classes = args.classes.split(',')
formatOrigin(osp.join(dataPath, 'bdd100kmot_vehicle'), phase)
dataDir = osp.join(
osp.join(dataPath, 'bdd100kmot_vehicle'), 'labels_with_ids',
phase) + '/*'
genMotGt(dataDir, classes=classes)
copyImg(dataPath, osp.join(dataPath, 'bdd100kmot_vehicle'), phase)
updateSeqInfo(osp.join(dataPath, 'bdd100kmot_vehicle'), phase)
gen_image_list(osp.join(dataPath, 'bdd100kmot_vehicle'), phase)
os.system(f'rm -r {dataPath}/bdd100kmot_vehicle/images/' + phase + '/*.jpg')

View File

@@ -0,0 +1,16 @@
data_path=bdd100k
img_dir=${data_path}/images/track
label_dir=${data_path}/labels/box_track_20
save_path=${data_path}/bdd100kmot_vehicle
phasetrain=train
phaseval=val
classes=2,3,4,9,10
# gen mot dataset
python bdd100k2mot.py --data_path=${data_path} --phase=${phasetrain} --classes=${classes} --img_dir=${img_dir} --label_dir=${label_dir} --save_path=${save_path}
python bdd100k2mot.py --data_path=${data_path} --phase=${phaseval} --classes=${classes} --img_dir=${img_dir} --label_dir=${label_dir} --save_path=${save_path}
# gen new labels_with_ids
python gen_labels_MOT.py --mot_data=${data_path} --phase=${phasetrain}
python gen_labels_MOT.py --mot_data=${data_path} --phase=${phaseval}

View File

@@ -0,0 +1,72 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import os.path as osp
import numpy as np
import argparse
def mkdirs(d):
if not osp.exists(d):
os.makedirs(d)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='BDD100K to MOT format')
parser.add_argument(
"--mot_data", default='./bdd100k')
parser.add_argument("--phase", default='train')
args = parser.parse_args()
MOT_data = args.mot_data
phase = args.phase
seq_root = osp.join(MOT_data, 'bdd100kmot_vehicle', 'images', phase)
label_root = osp.join(MOT_data, 'bdd100kmot_vehicle', 'labels_with_ids',
phase)
mkdirs(label_root)
seqs = [s for s in os.listdir(seq_root)]
tid_curr = 0
tid_last = -1
os.system(f'rm -r {MOT_data}/bdd100kmot_vehicle/labels_with_ids')
for seq in seqs:
print('seq => ', seq)
seq_info = open(osp.join(seq_root, seq, 'seqinfo.ini')).read()
seq_width = int(seq_info[seq_info.find('imWidth=') + 8:seq_info.find(
'\nimHeight')])
seq_height = int(seq_info[seq_info.find('imHeight=') + 9:seq_info.find(
'\nimExt')])
gt_txt = osp.join(seq_root, seq, 'gt', 'gt.txt')
gt = np.loadtxt(gt_txt, dtype=np.float64, delimiter=',')
seq_label_root = osp.join(label_root, seq, 'img1')
mkdirs(seq_label_root)
for fid, tid, x, y, w, h, mark, label, _ in gt:
fid = int(fid)
tid = int(tid)
if not tid == tid_last:
tid_curr += 1
tid_last = tid
x += w / 2
y += h / 2
label_fpath = osp.join(seq_label_root,
seq + '-' + '{:07d}.txt'.format(fid))
label_str = '0 {:d} {:.6f} {:.6f} {:.6f} {:.6f}\n'.format(
tid_curr, x / seq_width, y / seq_height, w / seq_width,
h / seq_height)
with open(label_fpath, 'a') as f:
f.write(label_str)