更换文档检测模型
This commit is contained in:
53
paddle_detection/configs/ppvehicle/vehicle_yolov3/README.md
Normal file
53
paddle_detection/configs/ppvehicle/vehicle_yolov3/README.md
Normal file
@@ -0,0 +1,53 @@
|
||||
English | [简体中文](README_cn.md)
|
||||
# PaddleDetection applied for specific scenarios
|
||||
|
||||
We provide some models implemented by PaddlePaddle to detect objects in specific scenarios, users can download the models and use them in these scenarios.
|
||||
|
||||
| Task | Algorithm | Box AP | Download | Configs |
|
||||
|:---------------------|:---------:|:------:| :-------------------------------------------------------------------------------------: |:------:|
|
||||
| Vehicle Detection | YOLOv3 | 54.5 | [model](https://paddledet.bj.bcebos.com/models/vehicle_yolov3_darknet.pdparams) | [config](./vehicle_yolov3_darknet.yml) |
|
||||
|
||||
## Vehicle Detection
|
||||
|
||||
One of major applications of vehichle detection is traffic monitoring. In this scenary, vehicles to be detected are mostly captured by the cameras mounted on top of traffic light columns.
|
||||
|
||||
### 1. Network
|
||||
|
||||
The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53.
|
||||
|
||||
### 2. Configuration for training
|
||||
|
||||
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for vehicle detection:
|
||||
|
||||
* num_classes: 6
|
||||
* anchors: [[8, 9], [10, 23], [19, 15], [23, 33], [40, 25], [54, 50], [101, 80], [139, 145], [253, 224]]
|
||||
* nms/nms_top_k: 400
|
||||
* nms/score_threshold: 0.005
|
||||
* dataset_dir: dataset/vehicle
|
||||
|
||||
### 3. Accuracy
|
||||
|
||||
The accuracy of the model trained and evaluated on our private data is shown as followed:
|
||||
|
||||
AP at IoU=.50:.05:.95 is 0.545.
|
||||
|
||||
AP at IoU=.50 is 0.764.
|
||||
|
||||
### 4. Inference
|
||||
|
||||
Users can employ the model to conduct the inference:
|
||||
|
||||
```
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
python -u tools/infer.py -c configs/ppvehicle/vehicle_yolov3/vehicle_yolov3_darknet.yml \
|
||||
-o weights=https://paddledet.bj.bcebos.com/models/vehicle_yolov3_darknet.pdparams \
|
||||
--infer_dir configs/ppvehicle/vehicle_yolov3/demo \
|
||||
--draw_threshold 0.2 \
|
||||
--output_dir configs/ppvehicle/vehicle_yolov3/demo/output
|
||||
```
|
||||
|
||||
Some inference results are visualized below:
|
||||
|
||||

|
||||
|
||||

|
||||
Reference in New Issue
Block a user