更换文档检测模型
This commit is contained in:
302
paddle_detection/configs/rotate/tools/onnx_infer.py
Normal file
302
paddle_detection/configs/rotate/tools/onnx_infer.py
Normal file
@@ -0,0 +1,302 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import sys
|
||||
import six
|
||||
import glob
|
||||
import copy
|
||||
import yaml
|
||||
import argparse
|
||||
import cv2
|
||||
import numpy as np
|
||||
from shapely.geometry import Polygon
|
||||
from onnxruntime import InferenceSession
|
||||
|
||||
|
||||
# preprocess ops
|
||||
def decode_image(img_path):
|
||||
with open(img_path, 'rb') as f:
|
||||
im_read = f.read()
|
||||
data = np.frombuffer(im_read, dtype='uint8')
|
||||
im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
|
||||
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
||||
img_info = {
|
||||
"im_shape": np.array(
|
||||
im.shape[:2], dtype=np.float32),
|
||||
"scale_factor": np.array(
|
||||
[1., 1.], dtype=np.float32)
|
||||
}
|
||||
return im, img_info
|
||||
|
||||
|
||||
class Resize(object):
|
||||
def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
|
||||
if isinstance(target_size, int):
|
||||
target_size = [target_size, target_size]
|
||||
self.target_size = target_size
|
||||
self.keep_ratio = keep_ratio
|
||||
self.interp = interp
|
||||
|
||||
def __call__(self, im, im_info):
|
||||
assert len(self.target_size) == 2
|
||||
assert self.target_size[0] > 0 and self.target_size[1] > 0
|
||||
im_channel = im.shape[2]
|
||||
im_scale_y, im_scale_x = self.generate_scale(im)
|
||||
im = cv2.resize(
|
||||
im,
|
||||
None,
|
||||
None,
|
||||
fx=im_scale_x,
|
||||
fy=im_scale_y,
|
||||
interpolation=self.interp)
|
||||
im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
|
||||
im_info['scale_factor'] = np.array(
|
||||
[im_scale_y, im_scale_x]).astype('float32')
|
||||
return im, im_info
|
||||
|
||||
def generate_scale(self, im):
|
||||
origin_shape = im.shape[:2]
|
||||
im_c = im.shape[2]
|
||||
if self.keep_ratio:
|
||||
im_size_min = np.min(origin_shape)
|
||||
im_size_max = np.max(origin_shape)
|
||||
target_size_min = np.min(self.target_size)
|
||||
target_size_max = np.max(self.target_size)
|
||||
im_scale = float(target_size_min) / float(im_size_min)
|
||||
if np.round(im_scale * im_size_max) > target_size_max:
|
||||
im_scale = float(target_size_max) / float(im_size_max)
|
||||
im_scale_x = im_scale
|
||||
im_scale_y = im_scale
|
||||
else:
|
||||
resize_h, resize_w = self.target_size
|
||||
im_scale_y = resize_h / float(origin_shape[0])
|
||||
im_scale_x = resize_w / float(origin_shape[1])
|
||||
return im_scale_y, im_scale_x
|
||||
|
||||
|
||||
class Permute(object):
|
||||
def __init__(self, ):
|
||||
super(Permute, self).__init__()
|
||||
|
||||
def __call__(self, im, im_info):
|
||||
im = im.transpose((2, 0, 1))
|
||||
return im, im_info
|
||||
|
||||
|
||||
class NormalizeImage(object):
|
||||
def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
|
||||
self.mean = mean
|
||||
self.std = std
|
||||
self.is_scale = is_scale
|
||||
self.norm_type = norm_type
|
||||
|
||||
def __call__(self, im, im_info):
|
||||
im = im.astype(np.float32, copy=False)
|
||||
if self.is_scale:
|
||||
scale = 1.0 / 255.0
|
||||
im *= scale
|
||||
|
||||
if self.norm_type == 'mean_std':
|
||||
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
|
||||
std = np.array(self.std)[np.newaxis, np.newaxis, :]
|
||||
im -= mean
|
||||
im /= std
|
||||
return im, im_info
|
||||
|
||||
|
||||
class PadStride(object):
|
||||
def __init__(self, stride=0):
|
||||
self.coarsest_stride = stride
|
||||
|
||||
def __call__(self, im, im_info):
|
||||
coarsest_stride = self.coarsest_stride
|
||||
if coarsest_stride <= 0:
|
||||
return im, im_info
|
||||
im_c, im_h, im_w = im.shape
|
||||
pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
|
||||
pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
|
||||
padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
|
||||
padding_im[:, :im_h, :im_w] = im
|
||||
return padding_im, im_info
|
||||
|
||||
|
||||
class Compose:
|
||||
def __init__(self, transforms):
|
||||
self.transforms = []
|
||||
for op_info in transforms:
|
||||
new_op_info = op_info.copy()
|
||||
op_type = new_op_info.pop('type')
|
||||
self.transforms.append(eval(op_type)(**new_op_info))
|
||||
|
||||
def __call__(self, img_path):
|
||||
img, im_info = decode_image(img_path)
|
||||
for t in self.transforms:
|
||||
img, im_info = t(img, im_info)
|
||||
inputs = copy.deepcopy(im_info)
|
||||
inputs['image'] = img
|
||||
return inputs
|
||||
|
||||
|
||||
# postprocess
|
||||
def rbox_iou(g, p):
|
||||
g = np.array(g)
|
||||
p = np.array(p)
|
||||
g = Polygon(g[:8].reshape((4, 2)))
|
||||
p = Polygon(p[:8].reshape((4, 2)))
|
||||
g = g.buffer(0)
|
||||
p = p.buffer(0)
|
||||
if not g.is_valid or not p.is_valid:
|
||||
return 0
|
||||
inter = Polygon(g).intersection(Polygon(p)).area
|
||||
union = g.area + p.area - inter
|
||||
if union == 0:
|
||||
return 0
|
||||
else:
|
||||
return inter / union
|
||||
|
||||
|
||||
def multiclass_nms_rotated(pred_bboxes,
|
||||
pred_scores,
|
||||
iou_threshlod=0.1,
|
||||
score_threshold=0.1):
|
||||
"""
|
||||
Args:
|
||||
pred_bboxes (numpy.ndarray): [B, N, 8]
|
||||
pred_scores (numpy.ndarray): [B, C, N]
|
||||
|
||||
Return:
|
||||
bboxes (numpy.ndarray): [N, 10]
|
||||
bbox_num (numpy.ndarray): [B]
|
||||
"""
|
||||
bbox_num = []
|
||||
bboxes = []
|
||||
for bbox_per_img, score_per_img in zip(pred_bboxes, pred_scores):
|
||||
num_per_img = 0
|
||||
for cls_id, score_per_cls in enumerate(score_per_img):
|
||||
keep_mask = score_per_cls > score_threshold
|
||||
bbox = bbox_per_img[keep_mask]
|
||||
score = score_per_cls[keep_mask]
|
||||
|
||||
idx = score.argsort()[::-1]
|
||||
bbox = bbox[idx]
|
||||
score = score[idx]
|
||||
keep_idx = []
|
||||
for i, b in enumerate(bbox):
|
||||
supressed = False
|
||||
for gi in keep_idx:
|
||||
g = bbox[gi]
|
||||
if rbox_iou(b, g) > iou_threshlod:
|
||||
supressed = True
|
||||
break
|
||||
|
||||
if supressed:
|
||||
continue
|
||||
|
||||
keep_idx.append(i)
|
||||
|
||||
keep_box = bbox[keep_idx]
|
||||
keep_score = score[keep_idx]
|
||||
keep_cls_ids = np.ones(len(keep_idx)) * cls_id
|
||||
bboxes.append(
|
||||
np.concatenate(
|
||||
[keep_cls_ids[:, None], keep_score[:, None], keep_box],
|
||||
axis=-1))
|
||||
num_per_img += len(keep_idx)
|
||||
|
||||
bbox_num.append(num_per_img)
|
||||
|
||||
return np.concatenate(bboxes, axis=0), np.array(bbox_num)
|
||||
|
||||
|
||||
def get_test_images(infer_dir, infer_img):
|
||||
"""
|
||||
Get image path list in TEST mode
|
||||
"""
|
||||
assert infer_img is not None or infer_dir is not None, \
|
||||
"--image_file or --image_dir should be set"
|
||||
assert infer_img is None or os.path.isfile(infer_img), \
|
||||
"{} is not a file".format(infer_img)
|
||||
assert infer_dir is None or os.path.isdir(infer_dir), \
|
||||
"{} is not a directory".format(infer_dir)
|
||||
|
||||
# infer_img has a higher priority
|
||||
if infer_img and os.path.isfile(infer_img):
|
||||
return [infer_img]
|
||||
|
||||
images = set()
|
||||
infer_dir = os.path.abspath(infer_dir)
|
||||
assert os.path.isdir(infer_dir), \
|
||||
"infer_dir {} is not a directory".format(infer_dir)
|
||||
exts = ['jpg', 'jpeg', 'png', 'bmp']
|
||||
exts += [ext.upper() for ext in exts]
|
||||
for ext in exts:
|
||||
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
|
||||
images = list(images)
|
||||
|
||||
assert len(images) > 0, "no image found in {}".format(infer_dir)
|
||||
print("Found {} inference images in total.".format(len(images)))
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def predict_image(infer_config, predictor, img_list):
|
||||
# load preprocess transforms
|
||||
transforms = Compose(infer_config['Preprocess'])
|
||||
# predict image
|
||||
for img_path in img_list:
|
||||
inputs = transforms(img_path)
|
||||
inputs_name = [var.name for var in predictor.get_inputs()]
|
||||
inputs = {k: inputs[k][None, ] for k in inputs_name}
|
||||
|
||||
outputs = predictor.run(output_names=None, input_feed=inputs)
|
||||
|
||||
bboxes, bbox_num = multiclass_nms_rotated(
|
||||
np.array(outputs[0]), np.array(outputs[1]))
|
||||
print("ONNXRuntime predict: ")
|
||||
for bbox in bboxes:
|
||||
if bbox[0] > -1 and bbox[1] > infer_config['draw_threshold']:
|
||||
print(f"{int(bbox[0])} {bbox[1]} "
|
||||
f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}"
|
||||
f"{bbox[6]} {bbox[7]} {bbox[8]} {bbox[9]}")
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument("--infer_cfg", type=str, help="infer_cfg.yml")
|
||||
parser.add_argument(
|
||||
'--onnx_file',
|
||||
type=str,
|
||||
default="model.onnx",
|
||||
help="onnx model file path")
|
||||
parser.add_argument("--image_dir", type=str)
|
||||
parser.add_argument("--image_file", type=str)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
FLAGS = parse_args()
|
||||
# load image list
|
||||
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
|
||||
# load predictor
|
||||
predictor = InferenceSession(FLAGS.onnx_file)
|
||||
# load infer config
|
||||
with open(FLAGS.infer_cfg) as f:
|
||||
infer_config = yaml.safe_load(f)
|
||||
|
||||
predict_image(infer_config, predictor, img_list)
|
||||
Reference in New Issue
Block a user