更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,437 @@
简体中文 | [English](README_en.md)
# Semi-Supervised Detection (Semi DET) 半监督检测
## 内容
- [简介](#简介)
- [模型库](#模型库)
- [Baseline](#Baseline)
- [DenseTeacher](#DenseTeacher)
- [ARSL](#ARSL)
- [半监督数据集准备](#半监督数据集准备)
- [半监督检测配置](#半监督检测配置)
- [训练集配置](#训练集配置)
- [预训练配置](#预训练配置)
- [全局配置](#全局配置)
- [模型配置](#模型配置)
- [数据增强配置](#数据增强配置)
- [其他配置](#其他配置)
- [使用说明](#使用说明)
- [训练](#训练)
- [评估](#评估)
- [预测](#预测)
- [部署](#部署)
- [引用](#引用)
## 简介
半监督目标检测(Semi DET)是**同时使用有标注数据和无标注数据**进行训练的目标检测既可以极大地节省标注成本也可以充分利用无标注数据进一步提高检测精度。PaddleDetection团队提供了[DenseTeacher](denseteacher/)和[ARSL](arsl/)等最前沿的半监督检测算法,用户可以下载使用。
## 模型库
### [Baseline](baseline)
**纯监督数据**模型的训练和模型库,请参照[Baseline](baseline)
### [DenseTeacher](denseteacher)
| 模型 | 监督数据比例 | Sup Baseline | Sup Epochs (Iters) | Sup mAP<sup>val<br>0.5:0.95 | Semi mAP<sup>val<br>0.5:0.95 | Semi Epochs (Iters) | 模型下载 | 配置文件 |
| :------------: | :---------: | :---------------------: | :---------------------: |:---------------------------: |:----------------------------: | :------------------: |:--------: |:----------: |
| DenseTeacher-FCOS | 5% | [sup_config](./baseline/fcos_r50_fpn_2x_coco_sup005.yml) | 24 (8712) | 21.3 | **30.6** | 240 (87120) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi005.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_semi005.yml) |
| DenseTeacher-FCOS | 10% | [sup_config](./baseline/fcos_r50_fpn_2x_coco_sup010.yml) | 24 (17424) | 26.3 | **35.1** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml) |
| DenseTeacher-FCOS(LSJ)| 10% | [sup_config](./baseline/fcos_r50_fpn_2x_coco_sup010.yml) | 24 (17424) | 26.3 | **37.1(LSJ)** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010_lsj.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_semi010_lsj.yml) |
| DenseTeacher-FCOS |100%(full)| [sup_config](./../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.ymll) | 24 (175896) | 42.6 | **44.2** | 24 (175896)| [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_full.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_full.yml) |
| 模型 | 监督数据比例 | Sup Baseline | Sup Epochs (Iters) | Sup mAP<sup>val<br>0.5:0.95 | Semi mAP<sup>val<br>0.5:0.95 | Semi Epochs (Iters) | 模型下载 | 配置文件 |
| :------------: | :---------: | :---------------------: | :---------------------: |:---------------------------: |:----------------------------: | :------------------: |:--------: |:----------: |
| DenseTeacher-PPYOLOE+_s | 5% | [sup_config](./baseline/ppyoloe_plus_crn_s_80e_coco_sup005.yml) | 80 (14480) | 32.8 | **34.0** | 200 (36200) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_ppyoloe_plus_crn_s_coco_semi005.pdparams) | [config](denseteacher/denseteacher_ppyoloe_plus_crn_s_coco_semi005.yml) |
| DenseTeacher-PPYOLOE+_s | 10% | [sup_config](./baseline/ppyoloe_plus_crn_s_80e_coco_sup010.yml) | 80 (14480) | 35.3 | **37.5** | 200 (36200) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_ppyoloe_plus_crn_s_coco_semi010.pdparams) | [config](denseteacher/denseteacher_ppyoloe_plus_crn_s_coco_semi010.yml) |
| DenseTeacher-PPYOLOE+_l | 5% | [sup_config](./baseline/ppyoloe_plus_crn_s_80e_coco_sup005.yml) | 80 (14480) | 42.9 | **45.4** | 200 (36200) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_ppyoloe_plus_crn_l_coco_semi005.pdparams) | [config](denseteacher/denseteacher_ppyoloe_plus_crn_l_coco_semi005.yml) |
| DenseTeacher-PPYOLOE+_l | 10% | [sup_config](./baseline/ppyoloe_plus_crn_l_80e_coco_sup010.yml) | 80 (14480) | 45.7 | **47.4** | 200 (36200) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_ppyoloe_plus_crn_l_coco_semi010.pdparams) | [config](denseteacher/denseteacher_ppyoloe_plus_crn_l_coco_semi010.yml) |
### [ARSL](arsl)
| 模型 | COCO监督数据比例 | Semi mAP<sup>val<br>0.5:0.95 | Semi Epochs (Iters) | 模型下载 | 配置文件 |
| :------------: | :---------:|:----------------------------: | :------------------: |:--------: |:----------: |
| ARSL-FCOS | 1% | **22.8** | 240 (87120) | [download](https://paddledet.bj.bcebos.com/models/arsl_fcos_r50_fpn_coco_semi001.pdparams) | [config](arsl/arsl_fcos_r50_fpn_coco_semi001.yml) |
| ARSL-FCOS | 5% | **33.1** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/arsl_fcos_r50_fpn_coco_semi005.pdparams) | [config](arsl/arsl_fcos_r50_fpn_coco_semi005.yml ) |
| ARSL-FCOS | 10% | **36.9** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/arsl_fcos_r50_fpn_coco_semi010.pdparams) | [config](arsl/arsl_fcos_r50_fpn_coco_semi010.yml ) |
| ARSL-FCOS | 10% | **38.5(LSJ)** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/arsl_fcos_r50_fpn_coco_semi010_lsj.pdparams) | [config](arsl/arsl_fcos_r50_fpn_coco_semi010_lsj.yml ) |
| ARSL-FCOS | full(100%) | **45.1** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/arsl_fcos_r50_fpn_coco_full.pdparams) | [config](arsl/arsl_fcos_r50_fpn_coco_full.yml ) |
## 半监督数据集准备
半监督目标检测**同时需要有标注数据和无标注数据**,且无标注数据量一般**远多于有标注数据量**。
对于COCO数据集一般有两种常规设置
1抽取部分比例的原始训练集`train2017`作为标注数据和无标注数据;
`train2017`中按固定百分比1%、2%、5%、10%等)抽取,由于抽取方法会对半监督训练的结果影响较大,所以采用五折交叉验证来评估。运行数据集划分制作的脚本如下:
```bash
python tools/gen_semi_coco.py
```
会按照 1%、2%、5%、10% 的监督数据比例来划分`train2017`全集为了交叉验证每一种划分会随机重复5次生成的半监督标注文件如下
- 标注数据集标注:`instances_train2017.{fold}@{percent}.json`
- 无标注数据集标注:`instances_train2017.{fold}@{percent}-unlabeled.json`
其中,`fold` 表示交叉验证,`percent` 表示有标注数据的百分比。
注意如果根据`txt_file`生成,需要下载`COCO_supervision.txt`:
```shell
wget https://bj.bcebos.com/v1/paddledet/data/coco/COCO_supervision.txt
```
2使用全量原始训练集`train2017`作为有标注数据 和 全量原始无标签图片集`unlabeled2017`作为无标注数据;
### 下载链接
PaddleDetection团队提供了COCO数据集全部的标注文件请下载并解压存放至对应目录:
```shell
# 下载COCO全量数据集图片和标注
# 包括 train2017, val2017, annotations
wget https://bj.bcebos.com/v1/paddledet/data/coco.tar
# 下载PaddleDetection团队整理的COCO部分比例数据的标注文件
wget https://bj.bcebos.com/v1/paddledet/data/coco/semi_annotations.zip
# unlabeled2017是可选如果不需要训full则无需下载
# 下载COCO全量 unlabeled 无标注数据集
wget https://bj.bcebos.com/v1/paddledet/data/coco/unlabeled2017.zip
wget https://bj.bcebos.com/v1/paddledet/data/coco/image_info_unlabeled2017.zip
# 下载转换完的 unlabeled2017 无标注json文件
wget https://bj.bcebos.com/v1/paddledet/data/coco/instances_unlabeled2017.zip
```
如果需要用到COCO全量unlabeled无标注数据集需要将原版的`image_info_unlabeled2017.json`进行格式转换,运行以下代码:
<details>
<summary> COCO unlabeled 标注转换代码:</summary>
```python
import json
anns_train = json.load(open('annotations/instances_train2017.json', 'r'))
anns_unlabeled = json.load(open('annotations/image_info_unlabeled2017.json', 'r'))
unlabeled_json = {
'images': anns_unlabeled['images'],
'annotations': [],
'categories': anns_train['categories'],
}
path = 'annotations/instances_unlabeled2017.json'
with open(path, 'w') as f:
json.dump(unlabeled_json, f)
```
</details>
<details open>
<summary> 解压后的数据集目录如下:</summary>
```
PaddleDetection
├── dataset
│ ├── coco
│ │ ├── annotations
│ │ │ ├── instances_train2017.json
│ │ │ ├── instances_unlabeled2017.json
│ │ │ ├── instances_val2017.json
│ │ ├── semi_annotations
│ │ │ ├── instances_train2017.1@1.json
│ │ │ ├── instances_train2017.1@1-unlabeled.json
│ │ │ ├── instances_train2017.1@2.json
│ │ │ ├── instances_train2017.1@2-unlabeled.json
│ │ │ ├── instances_train2017.1@5.json
│ │ │ ├── instances_train2017.1@5-unlabeled.json
│ │ │ ├── instances_train2017.1@10.json
│ │ │ ├── instances_train2017.1@10-unlabeled.json
│ │ ├── train2017
│ │ ├── unlabeled2017
│ │ ├── val2017
```
</details>
## 半监督检测配置
配置半监督检测,需要基于选用的**基础检测器**的配置文件,如:
```python
_BASE_: [
'../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml',
'../_base_/coco_detection_percent_10.yml',
]
log_iter: 50
snapshot_epoch: 5
epochs: &epochs 240
weights: output/denseteacher_fcos_r50_fpn_coco_semi010/model_final
```
并依次做出如下几点改动:
### 训练集配置
首先可以直接引用已经配置好的半监督训练集,如:
```python
_BASE_: [
'../_base_/coco_detection_percent_10.yml',
]
```
具体来看,构建半监督数据集,需要同时配置监督数据集`TrainDataset`和无监督数据集`UnsupTrainDataset`的路径,**注意必须选用`SemiCOCODataSet`类而不是`COCODataSet`类**,如以下所示:
**COCO-train2017部分比例数据集**
```python
# partial labeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
TrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@10.json
dataset_dir: dataset/coco
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
# partial unlabeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
UnsupTrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@10-unlabeled.json
dataset_dir: dataset/coco
data_fields: ['image']
supervised: False
```
或者 **COCO-train2017 full全量数据集**
```python
# full labeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
TrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: annotations/instances_train2017.json
dataset_dir: dataset/coco
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
# full unlabeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
UnsupTrainDataset:
!SemiCOCODataSet
image_dir: unlabeled2017
anno_path: annotations/instances_unlabeled2017.json
dataset_dir: dataset/coco
data_fields: ['image']
supervised: False
```
验证集`EvalDataset`和测试集`TestDataset`的配置**不需要更改**,且还是采用`COCODataSet`类。
### 预训练配置
```python
### pretrain and warmup config, choose one and comment another
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
semi_start_iters: 5000
ema_start_iters: 3000
use_warmup: &use_warmup True
```
**注意:**
- `Dense Teacher`原文使用`R50-va-caffe`预训练PaddleDetection中默认使用`R50-vb`预训练,如果使用`R50-vd`结合[SSLD](../../../docs/feature_models/SSLD_PRETRAINED_MODEL.md)的预训练模型可进一步显著提升检测精度同时backbone部分配置也需要做出相应更改
```python
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
ResNet:
depth: 50
variant: d
norm_type: bn
freeze_at: 0
return_idx: [1, 2, 3]
num_stages: 4
lr_mult_list: [0.05, 0.05, 0.1, 0.15]
```
### 全局配置
需要在配置文件中添加如下全局配置,并且注意 DenseTeacher 模型需要使用`use_simple_ema: True`而不是`use_ema: True`
```python
### global config
use_simple_ema: True
ema_decay: 0.9996
ssod_method: DenseTeacher
DenseTeacher:
train_cfg:
sup_weight: 1.0
unsup_weight: 1.0
loss_weight: {distill_loss_cls: 4.0, distill_loss_box: 1.0, distill_loss_quality: 1.0}
concat_sup_data: True
suppress: linear
ratio: 0.01
gamma: 2.0
test_cfg:
inference_on: teacher
```
### 模型配置
如果没有特殊改动,则直接继承自基础检测器里的模型配置。
以 `DenseTeacher` 为例,选择 `fcos_r50_fpn_iou_multiscale_2x_coco.yml` 作为**基础检测器**进行半监督训练,**teacher网络的结构和student网络的结构均为基础检测器的结构且结构相同**。
```python
_BASE_: [
'../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml',
]
```
### 数据增强配置
构建半监督训练集的Reader需要在原先`TrainReader`的基础上,新增加`weak_aug`,`strong_aug`,`sup_batch_transforms`和`unsup_batch_transforms`,并且需要注意:
- 如果有`NormalizeImage`,需要单独从`sample_transforms`中抽出来放在`weak_aug`和`strong_aug`中;
- `sample_transforms`为**公用的基础数据增强**
- 完整的弱数据增强为`sample_transforms + weak_aug`,完整的强数据增强为`sample_transforms + strong_aug`
如以下所示:
原纯监督模型的`TrainReader`
```python
TrainReader:
sample_transforms:
- Decode: {}
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 1}
- RandomFlip: {}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
- Gt2FCOSTarget:
object_sizes_boundary: [64, 128, 256, 512]
center_sampling_radius: 1.5
downsample_ratios: [8, 16, 32, 64, 128]
norm_reg_targets: True
batch_size: 2
shuffle: True
drop_last: True
```
更改后的半监督TrainReader
```python
### reader config
SemiTrainReader:
sample_transforms:
- Decode: {}
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 1}
- RandomFlip: {}
weak_aug:
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
strong_aug:
- StrongAugImage: {transforms: [
RandomColorJitter: {prob: 0.8, brightness: 0.4, contrast: 0.4, saturation: 0.4, hue: 0.1},
RandomErasingCrop: {},
RandomGaussianBlur: {prob: 0.5, sigma: [0.1, 2.0]},
RandomGrayscale: {prob: 0.2},
]}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
sup_batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
- Gt2FCOSTarget:
object_sizes_boundary: [64, 128, 256, 512]
center_sampling_radius: 1.5
downsample_ratios: [8, 16, 32, 64, 128]
norm_reg_targets: True
unsup_batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
sup_batch_size: 2
unsup_batch_size: 2
shuffle: True
drop_last: True
```
### 其他配置
训练epoch数需要和全量数据训练时换算总iter数保持一致如全量训练24 epoch(换算约为180k个iter)则10%监督数据的半监督训练总epoch数需要为240 epoch左右(换算约为180k个iter)。示例如下:
```python
### other config
epoch: 240
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: 240
use_warmup: True
- !LinearWarmup
start_factor: 0.001
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
clip_grad_by_value: 1.0
```
## 使用说明
仅训练时必须使用半监督检测的配置文件去训练,评估、预测、部署也可以按基础检测器的配置文件去执行。
### 训练
```bash
# 单卡训练 (不推荐,需按线性比例相应地调整学习率)
CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/semi_det/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml --eval
# 多卡训练
python -m paddle.distributed.launch --log_dir=denseteacher_fcos_semi010/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/semi_det/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml --eval
```
### 评估
```bash
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/semi_det/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=output/denseteacher_fcos_r50_fpn_coco_semi010/model_final.pdparams
```
### 预测
```bash
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/semi_det/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=output/denseteacher_fcos_r50_fpn_coco_semi010/model_final.pdparams --infer_img=demo/000000014439.jpg
```
### 部署
部署可以使用半监督检测配置文件,也可以使用基础检测器的配置文件去部署和使用。
```bash
# 导出模型
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/semi_det/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010.pdparams
# 导出权重预测
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/denseteacher_fcos_r50_fpn_coco_semi010 --image_file=demo/000000014439_640x640.jpg --device=GPU
# 部署测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/denseteacher_fcos_r50_fpn_coco_semi010 --image_file=demo/000000014439_640x640.jpg --device=GPU --run_benchmark=True # --run_mode=trt_fp16
# 导出ONNX
paddle2onnx --model_dir output_inference/denseteacher_fcos_r50_fpn_coco_semi010/ --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file denseteacher_fcos_r50_fpn_coco_semi010.onnx
```
## 引用
```
@article{denseteacher2022,
title={Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection},
author={Hongyu Zhou, Zheng Ge, Songtao Liu, Weixin Mao, Zeming Li, Haiyan Yu, Jian Sun},
journal={arXiv preprint arXiv:2207.02541},
year={2022}
}
```