更换文档检测模型
This commit is contained in:
437
paddle_detection/configs/semi_det/README.md
Normal file
437
paddle_detection/configs/semi_det/README.md
Normal file
@@ -0,0 +1,437 @@
|
||||
简体中文 | [English](README_en.md)
|
||||
|
||||
# Semi-Supervised Detection (Semi DET) 半监督检测
|
||||
|
||||
## 内容
|
||||
- [简介](#简介)
|
||||
- [模型库](#模型库)
|
||||
- [Baseline](#Baseline)
|
||||
- [DenseTeacher](#DenseTeacher)
|
||||
- [ARSL](#ARSL)
|
||||
- [半监督数据集准备](#半监督数据集准备)
|
||||
- [半监督检测配置](#半监督检测配置)
|
||||
- [训练集配置](#训练集配置)
|
||||
- [预训练配置](#预训练配置)
|
||||
- [全局配置](#全局配置)
|
||||
- [模型配置](#模型配置)
|
||||
- [数据增强配置](#数据增强配置)
|
||||
- [其他配置](#其他配置)
|
||||
- [使用说明](#使用说明)
|
||||
- [训练](#训练)
|
||||
- [评估](#评估)
|
||||
- [预测](#预测)
|
||||
- [部署](#部署)
|
||||
- [引用](#引用)
|
||||
|
||||
## 简介
|
||||
半监督目标检测(Semi DET)是**同时使用有标注数据和无标注数据**进行训练的目标检测,既可以极大地节省标注成本,也可以充分利用无标注数据进一步提高检测精度。PaddleDetection团队提供了[DenseTeacher](denseteacher/)和[ARSL](arsl/)等最前沿的半监督检测算法,用户可以下载使用。
|
||||
|
||||
## 模型库
|
||||
|
||||
### [Baseline](baseline)
|
||||
|
||||
**纯监督数据**模型的训练和模型库,请参照[Baseline](baseline);
|
||||
|
||||
|
||||
### [DenseTeacher](denseteacher)
|
||||
|
||||
| 模型 | 监督数据比例 | Sup Baseline | Sup Epochs (Iters) | Sup mAP<sup>val<br>0.5:0.95 | Semi mAP<sup>val<br>0.5:0.95 | Semi Epochs (Iters) | 模型下载 | 配置文件 |
|
||||
| :------------: | :---------: | :---------------------: | :---------------------: |:---------------------------: |:----------------------------: | :------------------: |:--------: |:----------: |
|
||||
| DenseTeacher-FCOS | 5% | [sup_config](./baseline/fcos_r50_fpn_2x_coco_sup005.yml) | 24 (8712) | 21.3 | **30.6** | 240 (87120) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi005.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_semi005.yml) |
|
||||
| DenseTeacher-FCOS | 10% | [sup_config](./baseline/fcos_r50_fpn_2x_coco_sup010.yml) | 24 (17424) | 26.3 | **35.1** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml) |
|
||||
| DenseTeacher-FCOS(LSJ)| 10% | [sup_config](./baseline/fcos_r50_fpn_2x_coco_sup010.yml) | 24 (17424) | 26.3 | **37.1(LSJ)** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010_lsj.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_semi010_lsj.yml) |
|
||||
| DenseTeacher-FCOS |100%(full)| [sup_config](./../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.ymll) | 24 (175896) | 42.6 | **44.2** | 24 (175896)| [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_full.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_full.yml) |
|
||||
|
||||
| 模型 | 监督数据比例 | Sup Baseline | Sup Epochs (Iters) | Sup mAP<sup>val<br>0.5:0.95 | Semi mAP<sup>val<br>0.5:0.95 | Semi Epochs (Iters) | 模型下载 | 配置文件 |
|
||||
| :------------: | :---------: | :---------------------: | :---------------------: |:---------------------------: |:----------------------------: | :------------------: |:--------: |:----------: |
|
||||
| DenseTeacher-PPYOLOE+_s | 5% | [sup_config](./baseline/ppyoloe_plus_crn_s_80e_coco_sup005.yml) | 80 (14480) | 32.8 | **34.0** | 200 (36200) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_ppyoloe_plus_crn_s_coco_semi005.pdparams) | [config](denseteacher/denseteacher_ppyoloe_plus_crn_s_coco_semi005.yml) |
|
||||
| DenseTeacher-PPYOLOE+_s | 10% | [sup_config](./baseline/ppyoloe_plus_crn_s_80e_coco_sup010.yml) | 80 (14480) | 35.3 | **37.5** | 200 (36200) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_ppyoloe_plus_crn_s_coco_semi010.pdparams) | [config](denseteacher/denseteacher_ppyoloe_plus_crn_s_coco_semi010.yml) |
|
||||
| DenseTeacher-PPYOLOE+_l | 5% | [sup_config](./baseline/ppyoloe_plus_crn_s_80e_coco_sup005.yml) | 80 (14480) | 42.9 | **45.4** | 200 (36200) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_ppyoloe_plus_crn_l_coco_semi005.pdparams) | [config](denseteacher/denseteacher_ppyoloe_plus_crn_l_coco_semi005.yml) |
|
||||
| DenseTeacher-PPYOLOE+_l | 10% | [sup_config](./baseline/ppyoloe_plus_crn_l_80e_coco_sup010.yml) | 80 (14480) | 45.7 | **47.4** | 200 (36200) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_ppyoloe_plus_crn_l_coco_semi010.pdparams) | [config](denseteacher/denseteacher_ppyoloe_plus_crn_l_coco_semi010.yml) |
|
||||
|
||||
|
||||
### [ARSL](arsl)
|
||||
|
||||
| 模型 | COCO监督数据比例 | Semi mAP<sup>val<br>0.5:0.95 | Semi Epochs (Iters) | 模型下载 | 配置文件 |
|
||||
| :------------: | :---------:|:----------------------------: | :------------------: |:--------: |:----------: |
|
||||
| ARSL-FCOS | 1% | **22.8** | 240 (87120) | [download](https://paddledet.bj.bcebos.com/models/arsl_fcos_r50_fpn_coco_semi001.pdparams) | [config](arsl/arsl_fcos_r50_fpn_coco_semi001.yml) |
|
||||
| ARSL-FCOS | 5% | **33.1** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/arsl_fcos_r50_fpn_coco_semi005.pdparams) | [config](arsl/arsl_fcos_r50_fpn_coco_semi005.yml ) |
|
||||
| ARSL-FCOS | 10% | **36.9** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/arsl_fcos_r50_fpn_coco_semi010.pdparams) | [config](arsl/arsl_fcos_r50_fpn_coco_semi010.yml ) |
|
||||
| ARSL-FCOS | 10% | **38.5(LSJ)** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/arsl_fcos_r50_fpn_coco_semi010_lsj.pdparams) | [config](arsl/arsl_fcos_r50_fpn_coco_semi010_lsj.yml ) |
|
||||
| ARSL-FCOS | full(100%) | **45.1** | 240 (174240) | [download](https://paddledet.bj.bcebos.com/models/arsl_fcos_r50_fpn_coco_full.pdparams) | [config](arsl/arsl_fcos_r50_fpn_coco_full.yml ) |
|
||||
|
||||
|
||||
|
||||
## 半监督数据集准备
|
||||
|
||||
半监督目标检测**同时需要有标注数据和无标注数据**,且无标注数据量一般**远多于有标注数据量**。
|
||||
对于COCO数据集一般有两种常规设置:
|
||||
|
||||
(1)抽取部分比例的原始训练集`train2017`作为标注数据和无标注数据;
|
||||
|
||||
从`train2017`中按固定百分比(1%、2%、5%、10%等)抽取,由于抽取方法会对半监督训练的结果影响较大,所以采用五折交叉验证来评估。运行数据集划分制作的脚本如下:
|
||||
```bash
|
||||
python tools/gen_semi_coco.py
|
||||
```
|
||||
会按照 1%、2%、5%、10% 的监督数据比例来划分`train2017`全集,为了交叉验证每一种划分会随机重复5次,生成的半监督标注文件如下:
|
||||
- 标注数据集标注:`instances_train2017.{fold}@{percent}.json`
|
||||
- 无标注数据集标注:`instances_train2017.{fold}@{percent}-unlabeled.json`
|
||||
其中,`fold` 表示交叉验证,`percent` 表示有标注数据的百分比。
|
||||
|
||||
注意如果根据`txt_file`生成,需要下载`COCO_supervision.txt`:
|
||||
```shell
|
||||
wget https://bj.bcebos.com/v1/paddledet/data/coco/COCO_supervision.txt
|
||||
```
|
||||
|
||||
(2)使用全量原始训练集`train2017`作为有标注数据 和 全量原始无标签图片集`unlabeled2017`作为无标注数据;
|
||||
|
||||
|
||||
### 下载链接
|
||||
|
||||
PaddleDetection团队提供了COCO数据集全部的标注文件,请下载并解压存放至对应目录:
|
||||
|
||||
```shell
|
||||
# 下载COCO全量数据集图片和标注
|
||||
# 包括 train2017, val2017, annotations
|
||||
wget https://bj.bcebos.com/v1/paddledet/data/coco.tar
|
||||
|
||||
# 下载PaddleDetection团队整理的COCO部分比例数据的标注文件
|
||||
wget https://bj.bcebos.com/v1/paddledet/data/coco/semi_annotations.zip
|
||||
|
||||
# unlabeled2017是可选,如果不需要训‘full’则无需下载
|
||||
# 下载COCO全量 unlabeled 无标注数据集
|
||||
wget https://bj.bcebos.com/v1/paddledet/data/coco/unlabeled2017.zip
|
||||
wget https://bj.bcebos.com/v1/paddledet/data/coco/image_info_unlabeled2017.zip
|
||||
# 下载转换完的 unlabeled2017 无标注json文件
|
||||
wget https://bj.bcebos.com/v1/paddledet/data/coco/instances_unlabeled2017.zip
|
||||
```
|
||||
|
||||
如果需要用到COCO全量unlabeled无标注数据集,需要将原版的`image_info_unlabeled2017.json`进行格式转换,运行以下代码:
|
||||
|
||||
<details>
|
||||
<summary> COCO unlabeled 标注转换代码:</summary>
|
||||
|
||||
```python
|
||||
import json
|
||||
anns_train = json.load(open('annotations/instances_train2017.json', 'r'))
|
||||
anns_unlabeled = json.load(open('annotations/image_info_unlabeled2017.json', 'r'))
|
||||
unlabeled_json = {
|
||||
'images': anns_unlabeled['images'],
|
||||
'annotations': [],
|
||||
'categories': anns_train['categories'],
|
||||
}
|
||||
path = 'annotations/instances_unlabeled2017.json'
|
||||
with open(path, 'w') as f:
|
||||
json.dump(unlabeled_json, f)
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details open>
|
||||
<summary> 解压后的数据集目录如下:</summary>
|
||||
|
||||
```
|
||||
PaddleDetection
|
||||
├── dataset
|
||||
│ ├── coco
|
||||
│ │ ├── annotations
|
||||
│ │ │ ├── instances_train2017.json
|
||||
│ │ │ ├── instances_unlabeled2017.json
|
||||
│ │ │ ├── instances_val2017.json
|
||||
│ │ ├── semi_annotations
|
||||
│ │ │ ├── instances_train2017.1@1.json
|
||||
│ │ │ ├── instances_train2017.1@1-unlabeled.json
|
||||
│ │ │ ├── instances_train2017.1@2.json
|
||||
│ │ │ ├── instances_train2017.1@2-unlabeled.json
|
||||
│ │ │ ├── instances_train2017.1@5.json
|
||||
│ │ │ ├── instances_train2017.1@5-unlabeled.json
|
||||
│ │ │ ├── instances_train2017.1@10.json
|
||||
│ │ │ ├── instances_train2017.1@10-unlabeled.json
|
||||
│ │ ├── train2017
|
||||
│ │ ├── unlabeled2017
|
||||
│ │ ├── val2017
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## 半监督检测配置
|
||||
|
||||
配置半监督检测,需要基于选用的**基础检测器**的配置文件,如:
|
||||
|
||||
```python
|
||||
_BASE_: [
|
||||
'../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml',
|
||||
'../_base_/coco_detection_percent_10.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 5
|
||||
epochs: &epochs 240
|
||||
weights: output/denseteacher_fcos_r50_fpn_coco_semi010/model_final
|
||||
```
|
||||
并依次做出如下几点改动:
|
||||
|
||||
### 训练集配置
|
||||
|
||||
首先可以直接引用已经配置好的半监督训练集,如:
|
||||
|
||||
```python
|
||||
_BASE_: [
|
||||
'../_base_/coco_detection_percent_10.yml',
|
||||
]
|
||||
```
|
||||
|
||||
具体来看,构建半监督数据集,需要同时配置监督数据集`TrainDataset`和无监督数据集`UnsupTrainDataset`的路径,**注意必须选用`SemiCOCODataSet`类而不是`COCODataSet`类**,如以下所示:
|
||||
|
||||
**COCO-train2017部分比例数据集**:
|
||||
|
||||
```python
|
||||
# partial labeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
|
||||
TrainDataset:
|
||||
!SemiCOCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@10.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
|
||||
|
||||
# partial unlabeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
|
||||
UnsupTrainDataset:
|
||||
!SemiCOCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@10-unlabeled.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image']
|
||||
supervised: False
|
||||
```
|
||||
|
||||
或者 **COCO-train2017 full全量数据集**:
|
||||
|
||||
```python
|
||||
# full labeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
|
||||
TrainDataset:
|
||||
!SemiCOCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: annotations/instances_train2017.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
|
||||
|
||||
# full unlabeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
|
||||
UnsupTrainDataset:
|
||||
!SemiCOCODataSet
|
||||
image_dir: unlabeled2017
|
||||
anno_path: annotations/instances_unlabeled2017.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image']
|
||||
supervised: False
|
||||
```
|
||||
|
||||
验证集`EvalDataset`和测试集`TestDataset`的配置**不需要更改**,且还是采用`COCODataSet`类。
|
||||
|
||||
|
||||
### 预训练配置
|
||||
|
||||
```python
|
||||
### pretrain and warmup config, choose one and comment another
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
|
||||
semi_start_iters: 5000
|
||||
ema_start_iters: 3000
|
||||
use_warmup: &use_warmup True
|
||||
```
|
||||
|
||||
**注意:**
|
||||
- `Dense Teacher`原文使用`R50-va-caffe`预训练,PaddleDetection中默认使用`R50-vb`预训练,如果使用`R50-vd`结合[SSLD](../../../docs/feature_models/SSLD_PRETRAINED_MODEL.md)的预训练模型,可进一步显著提升检测精度,同时backbone部分配置也需要做出相应更改,如:
|
||||
```python
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
|
||||
ResNet:
|
||||
depth: 50
|
||||
variant: d
|
||||
norm_type: bn
|
||||
freeze_at: 0
|
||||
return_idx: [1, 2, 3]
|
||||
num_stages: 4
|
||||
lr_mult_list: [0.05, 0.05, 0.1, 0.15]
|
||||
```
|
||||
|
||||
### 全局配置
|
||||
|
||||
需要在配置文件中添加如下全局配置,并且注意 DenseTeacher 模型需要使用`use_simple_ema: True`而不是`use_ema: True`:
|
||||
|
||||
```python
|
||||
### global config
|
||||
use_simple_ema: True
|
||||
ema_decay: 0.9996
|
||||
ssod_method: DenseTeacher
|
||||
DenseTeacher:
|
||||
train_cfg:
|
||||
sup_weight: 1.0
|
||||
unsup_weight: 1.0
|
||||
loss_weight: {distill_loss_cls: 4.0, distill_loss_box: 1.0, distill_loss_quality: 1.0}
|
||||
concat_sup_data: True
|
||||
suppress: linear
|
||||
ratio: 0.01
|
||||
gamma: 2.0
|
||||
test_cfg:
|
||||
inference_on: teacher
|
||||
```
|
||||
|
||||
### 模型配置
|
||||
|
||||
如果没有特殊改动,则直接继承自基础检测器里的模型配置。
|
||||
以 `DenseTeacher` 为例,选择 `fcos_r50_fpn_iou_multiscale_2x_coco.yml` 作为**基础检测器**进行半监督训练,**teacher网络的结构和student网络的结构均为基础检测器的结构,且结构相同**。
|
||||
|
||||
```python
|
||||
_BASE_: [
|
||||
'../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml',
|
||||
]
|
||||
```
|
||||
|
||||
### 数据增强配置
|
||||
|
||||
构建半监督训练集的Reader,需要在原先`TrainReader`的基础上,新增加`weak_aug`,`strong_aug`,`sup_batch_transforms`和`unsup_batch_transforms`,并且需要注意:
|
||||
- 如果有`NormalizeImage`,需要单独从`sample_transforms`中抽出来放在`weak_aug`和`strong_aug`中;
|
||||
- `sample_transforms`为**公用的基础数据增强**;
|
||||
- 完整的弱数据增强为`sample_transforms + weak_aug`,完整的强数据增强为`sample_transforms + strong_aug`;
|
||||
|
||||
如以下所示:
|
||||
|
||||
原纯监督模型的`TrainReader`:
|
||||
```python
|
||||
TrainReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 1}
|
||||
- RandomFlip: {}
|
||||
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
|
||||
batch_transforms:
|
||||
- Permute: {}
|
||||
- PadBatch: {pad_to_stride: 32}
|
||||
- Gt2FCOSTarget:
|
||||
object_sizes_boundary: [64, 128, 256, 512]
|
||||
center_sampling_radius: 1.5
|
||||
downsample_ratios: [8, 16, 32, 64, 128]
|
||||
norm_reg_targets: True
|
||||
batch_size: 2
|
||||
shuffle: True
|
||||
drop_last: True
|
||||
```
|
||||
|
||||
更改后的半监督TrainReader:
|
||||
|
||||
```python
|
||||
### reader config
|
||||
SemiTrainReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 1}
|
||||
- RandomFlip: {}
|
||||
weak_aug:
|
||||
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
|
||||
strong_aug:
|
||||
- StrongAugImage: {transforms: [
|
||||
RandomColorJitter: {prob: 0.8, brightness: 0.4, contrast: 0.4, saturation: 0.4, hue: 0.1},
|
||||
RandomErasingCrop: {},
|
||||
RandomGaussianBlur: {prob: 0.5, sigma: [0.1, 2.0]},
|
||||
RandomGrayscale: {prob: 0.2},
|
||||
]}
|
||||
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
|
||||
sup_batch_transforms:
|
||||
- Permute: {}
|
||||
- PadBatch: {pad_to_stride: 32}
|
||||
- Gt2FCOSTarget:
|
||||
object_sizes_boundary: [64, 128, 256, 512]
|
||||
center_sampling_radius: 1.5
|
||||
downsample_ratios: [8, 16, 32, 64, 128]
|
||||
norm_reg_targets: True
|
||||
unsup_batch_transforms:
|
||||
- Permute: {}
|
||||
- PadBatch: {pad_to_stride: 32}
|
||||
sup_batch_size: 2
|
||||
unsup_batch_size: 2
|
||||
shuffle: True
|
||||
drop_last: True
|
||||
```
|
||||
|
||||
### 其他配置
|
||||
|
||||
训练epoch数需要和全量数据训练时换算总iter数保持一致,如全量训练24 epoch(换算约为180k个iter),则10%监督数据的半监督训练,总epoch数需要为240 epoch左右(换算约为180k个iter)。示例如下:
|
||||
|
||||
```python
|
||||
### other config
|
||||
epoch: 240
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: 240
|
||||
use_warmup: True
|
||||
- !LinearWarmup
|
||||
start_factor: 0.001
|
||||
steps: 1000
|
||||
|
||||
OptimizerBuilder:
|
||||
optimizer:
|
||||
momentum: 0.9
|
||||
type: Momentum
|
||||
regularizer:
|
||||
factor: 0.0001
|
||||
type: L2
|
||||
clip_grad_by_value: 1.0
|
||||
```
|
||||
|
||||
|
||||
## 使用说明
|
||||
|
||||
仅训练时必须使用半监督检测的配置文件去训练,评估、预测、部署也可以按基础检测器的配置文件去执行。
|
||||
|
||||
### 训练
|
||||
|
||||
```bash
|
||||
# 单卡训练 (不推荐,需按线性比例相应地调整学习率)
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/semi_det/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml --eval
|
||||
|
||||
# 多卡训练
|
||||
python -m paddle.distributed.launch --log_dir=denseteacher_fcos_semi010/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/semi_det/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml --eval
|
||||
```
|
||||
|
||||
### 评估
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/semi_det/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=output/denseteacher_fcos_r50_fpn_coco_semi010/model_final.pdparams
|
||||
```
|
||||
|
||||
### 预测
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/semi_det/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=output/denseteacher_fcos_r50_fpn_coco_semi010/model_final.pdparams --infer_img=demo/000000014439.jpg
|
||||
```
|
||||
|
||||
### 部署
|
||||
|
||||
部署可以使用半监督检测配置文件,也可以使用基础检测器的配置文件去部署和使用。
|
||||
|
||||
```bash
|
||||
# 导出模型
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/semi_det/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010.pdparams
|
||||
|
||||
# 导出权重预测
|
||||
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/denseteacher_fcos_r50_fpn_coco_semi010 --image_file=demo/000000014439_640x640.jpg --device=GPU
|
||||
|
||||
# 部署测速
|
||||
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/denseteacher_fcos_r50_fpn_coco_semi010 --image_file=demo/000000014439_640x640.jpg --device=GPU --run_benchmark=True # --run_mode=trt_fp16
|
||||
|
||||
# 导出ONNX
|
||||
paddle2onnx --model_dir output_inference/denseteacher_fcos_r50_fpn_coco_semi010/ --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file denseteacher_fcos_r50_fpn_coco_semi010.onnx
|
||||
```
|
||||
|
||||
|
||||
## 引用
|
||||
|
||||
```
|
||||
@article{denseteacher2022,
|
||||
title={Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection},
|
||||
author={Hongyu Zhou, Zheng Ge, Songtao Liu, Weixin Mao, Zeming Li, Haiyan Yu, Jian Sun},
|
||||
journal={arXiv preprint arXiv:2207.02541},
|
||||
year={2022}
|
||||
}
|
||||
```
|
||||
Reference in New Issue
Block a user