更换文档检测模型
This commit is contained in:
93
paddle_detection/configs/semi_det/baseline/README.md
Normal file
93
paddle_detection/configs/semi_det/baseline/README.md
Normal file
@@ -0,0 +1,93 @@
|
||||
# Supervised Baseline 纯监督模型基线
|
||||
|
||||
## COCO数据集模型库
|
||||
|
||||
### [FCOS](../../fcos)
|
||||
|
||||
| 基础模型 | 监督数据比例 | Epochs (Iters) | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
|
||||
| :---------------: | :-------------: | :---------------: |:---------------------: |:--------: | :---------: |
|
||||
| FCOS ResNet50-FPN | 5% | 24 (8712) | 21.3 | [download](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_2x_coco_sup005.pdparams) | [config](fcos_r50_fpn_2x_coco_sup005.yml) |
|
||||
| FCOS ResNet50-FPN | 10% | 24 (17424) | 26.3 | [download](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_2x_coco_sup010.pdparams) | [config](fcos_r50_fpn_2x_coco_sup010.yml) |
|
||||
| FCOS ResNet50-FPN | full | 24 (175896) | 42.6 | [download](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_iou_multiscale_2x_coco.pdparams) | [config](../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml) |
|
||||
|
||||
**注意:**
|
||||
- 以上模型训练默认使用8 GPUs,总batch_size默认为16,默认初始学习率为0.01。如果改动了总batch_size,请按线性比例相应地调整学习率。
|
||||
|
||||
|
||||
### [PP-YOLOE+](../../ppyoloe)
|
||||
|
||||
| 基础模型 | 监督数据比例 | Epochs (Iters) | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
|
||||
| :---------------: | :-------------: | :---------------: | :---------------------: |:--------: | :---------: |
|
||||
| PP-YOLOE+_s | 5% | 80 (7200) | 32.8 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco_sup005.pdparams) | [config](ppyoloe_plus_crn_s_80e_coco_sup005.yml) |
|
||||
| PP-YOLOE+_s | 10% | 80 (14480) | 35.3 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco_sup010.pdparams) | [config](ppyoloe_plus_crn_s_80e_coco_sup010.yml) |
|
||||
| PP-YOLOE+_s | full | 80 (146560) | 43.7 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams) | [config](../../ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml) |
|
||||
| PP-YOLOE+_l | 5% | 80 (7200) | 42.9 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco_sup005.pdparams) | [config](ppyoloe_plus_crn_l_80e_coco_sup005.yml) |
|
||||
| PP-YOLOE+_l | 10% | 80 (14480) | 45.7 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco_sup010.pdparams) | [config](ppyoloe_plus_crn_l_80e_coco_sup010.yml) |
|
||||
| PP-YOLOE+_l | full | 80 (146560) | 49.8 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams) | [config](../../ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml) |
|
||||
|
||||
**注意:**
|
||||
- 以上模型训练默认使用8 GPUs,总batch_size默认为64,默认初始学习率为0.001。如果改动了总batch_size,请按线性比例相应地调整学习率。
|
||||
|
||||
|
||||
### [Faster R-CNN](../../faster_rcnn)
|
||||
|
||||
| 基础模型 | 监督数据比例 | Epochs (Iters) | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
|
||||
| :---------------: | :-------------: | :---------------: | :---------------------: |:--------: | :---------: |
|
||||
| Faster R-CNN ResNet50-FPN | 5% | 24 (8712) | 20.7 | [download](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco_sup005.pdparams) | [config](faster_rcnn_r50_fpn_2x_coco_sup005.yml) |
|
||||
| Faster R-CNN ResNet50-FPN | 10% | 24 (17424) | 25.6 | [download](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco_sup010.pdparams) | [config](faster_rcnn_r50_fpn_2x_coco_sup010.yml) |
|
||||
| Faster R-CNN ResNet50-FPN | full | 24 (175896) | 40.0 | [download](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco.pdparams) | [config](../../configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.yml) |
|
||||
|
||||
**注意:**
|
||||
- 以上模型训练默认使用8 GPUs,总batch_size默认为16,默认初始学习率为0.02。如果改动了总batch_size,请按线性比例相应地调整学习率。
|
||||
|
||||
|
||||
### [RetinaNet](../../retinanet)
|
||||
|
||||
| 基础模型 | 监督数据比例 | Epochs (Iters) | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
|
||||
| :---------------: | :-------------: | :---------------: | :---------------------: |:--------: | :---------: |
|
||||
| RetinaNet ResNet50-FPN | 5% | 24 (8712) | 13.9 | [download](https://paddledet.bj.bcebos.com/models/retinanet_r50_fpn_2x_coco_sup005.pdparams) | [config](retinanet_r50_fpn_2x_coco_sup005.yml) |
|
||||
| RetinaNet ResNet50-FPN | 10% | 24 (17424) | 23.6 | [download](https://paddledet.bj.bcebos.com/models/retinanet_r50_fpn_2x_coco_sup010.pdparams) | [config](retinanet_r50_fpn_2x_coco_sup010.yml) |
|
||||
| RetinaNet ResNet50-FPN | full | 24 (175896) | 39.1 | [download](https://paddledet.bj.bcebos.com/models/retinanet_r50_fpn_2x_coco.pdparams) | [config](../../configs/retinanet/retinanet_r50_fpn_2x_coco.yml) |
|
||||
|
||||
**注意:**
|
||||
- 以上模型训练默认使用8 GPUs,总batch_size默认为16,默认初始学习率为0.01。如果改动了总batch_size,请按线性比例相应地调整学习率。
|
||||
|
||||
|
||||
|
||||
### [RT-DETR](../../rtdetr)
|
||||
|
||||
| 基础模型 | 监督数据比例 | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
|
||||
| :---------------: | :-------------: | :---------------------: |:--------: | :---------: |
|
||||
| RT-DETR ResNet5vd | 5% | 39.1 | [download](https://bj.bcebos.com/v1/paddledet/data/semidet/rtdetr_ssod/baseline/rtdetr_r50vd_6x_coco_sup005.pdparams) | [config](rtdetr_r50vd_6x_coco_sup005.yml) |
|
||||
| RT-DETR ResNet5vd | 10% | 42.3 | [download](https://bj.bcebos.com/v1/paddledet/data/semidet/rtdetr_ssod/baseline/rtdetr_r50vd_6x_coco_sup010.pdparams) | [config](rtdetr_r50vd_6x_coco_sup010.yml) |
|
||||
| RT-DETR ResNet5vd | VOC2007 | 62.7 | [download](https://bj.bcebos.com/v1/paddledet/data/semidet/rtdetr_ssod/baseline/rtdetr_r50vd_6x_voc2007.pdparams) | [config](rtdetr_r50vd_6x_voc2007.yml) |
|
||||
|
||||
**注意:**
|
||||
- RT-DETR模型训练默认使用4 GPUs,总batch_size默认为16,默认初始学习率为0.0001。如果改动了总batch_size,请按线性比例相应地调整学习率。
|
||||
|
||||
### 注意事项
|
||||
- COCO部分监督数据集请参照 [数据集准备](../README.md) 去下载和准备,各个比例的训练集均为**从train2017中抽取部分百分比的子集**,默认使用`fold`号为1的划分子集,`sup010`表示抽取10%的监督数据训练,`sup005`表示抽取5%,`full`表示全部train2017,验证集均为val2017全量;
|
||||
- 抽取部分百分比的监督数据的抽法不同,或使用的`fold`号不同,精度都会因此而有约0.5 mAP之多的差异;
|
||||
- PP-YOLOE+ 使用Objects365预训练,其余模型均使用ImageNet预训练;
|
||||
- 线型比例相应调整学习率,参照公式: **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)**。
|
||||
|
||||
|
||||
## 使用教程
|
||||
|
||||
将以下命令写在一个脚本文件里如```run.sh```,一键运行命令为:```sh run.sh```,也可命令行一句句去运行:
|
||||
|
||||
```bash
|
||||
model_type=semi_det/baseline
|
||||
job_name=ppyoloe_plus_crn_s_80e_coco_sup010 # 可修改,如 fcos_r50_fpn_2x_coco_sup010
|
||||
|
||||
config=configs/${model_type}/${job_name}.yml
|
||||
log_dir=log_dir/${job_name}
|
||||
weights=output/${job_name}/model_final.pdparams
|
||||
|
||||
# 1.training
|
||||
# CUDA_VISIBLE_DEVICES=0 python tools/train.py -c ${config}
|
||||
python -m paddle.distributed.launch --log_dir=${log_dir} --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval --amp
|
||||
|
||||
# 2.eval
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c ${config} -o weights=${weights}
|
||||
```
|
||||
@@ -0,0 +1,42 @@
|
||||
_BASE_: [
|
||||
'../../faster_rcnn/faster_rcnn_r50_fpn_2x_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 2
|
||||
weights: output/faster_rcnn_r50_fpn_2x_coco_sup005/model_final
|
||||
|
||||
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@5.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
worker_num: 2
|
||||
TrainReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], interp: 2, keep_ratio: True}
|
||||
- RandomFlip: {}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
batch_transforms:
|
||||
- PadBatch: {pad_to_stride: 32}
|
||||
batch_size: 2
|
||||
shuffle: true
|
||||
drop_last: true
|
||||
collate_batch: false
|
||||
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
epochs: 1
|
||||
@@ -0,0 +1,42 @@
|
||||
_BASE_: [
|
||||
'../../faster_rcnn/faster_rcnn_r50_fpn_2x_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 2
|
||||
weights: output/faster_rcnn_r50_fpn_2x_coco_sup010/model_final
|
||||
|
||||
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@10.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
worker_num: 2
|
||||
TrainReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], interp: 2, keep_ratio: True}
|
||||
- RandomFlip: {}
|
||||
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
|
||||
- Permute: {}
|
||||
batch_transforms:
|
||||
- PadBatch: {pad_to_stride: 32}
|
||||
batch_size: 2
|
||||
shuffle: true
|
||||
drop_last: true
|
||||
collate_batch: false
|
||||
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.02
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.1
|
||||
epochs: 1
|
||||
@@ -0,0 +1,26 @@
|
||||
_BASE_: [
|
||||
'../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 2
|
||||
weights: output/fcos_r50_fpn_2x_coco_sup005/model_final
|
||||
|
||||
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@5.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.001
|
||||
epochs: 1
|
||||
@@ -0,0 +1,26 @@
|
||||
_BASE_: [
|
||||
'../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 2
|
||||
weights: output/fcos_r50_fpn_2x_coco_sup010/model_final
|
||||
|
||||
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@10.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.001
|
||||
epochs: 1
|
||||
@@ -0,0 +1,29 @@
|
||||
_BASE_: [
|
||||
'../../ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 5
|
||||
weights: output/ppyoloe_plus_crn_l_80e_coco_sup005/model_final
|
||||
|
||||
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_l_obj365_pretrained.pdparams
|
||||
depth_mult: 1.0
|
||||
width_mult: 1.0
|
||||
|
||||
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@5.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
epoch: 80
|
||||
LearningRate:
|
||||
base_lr: 0.001
|
||||
schedulers:
|
||||
- !CosineDecay
|
||||
max_epochs: 96
|
||||
- !LinearWarmup
|
||||
start_factor: 0.
|
||||
epochs: 5
|
||||
@@ -0,0 +1,29 @@
|
||||
_BASE_: [
|
||||
'../../ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 5
|
||||
weights: output/ppyoloe_plus_crn_l_80e_coco_sup010/model_final
|
||||
|
||||
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_l_obj365_pretrained.pdparams
|
||||
depth_mult: 1.0
|
||||
width_mult: 1.0
|
||||
|
||||
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@10.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
epoch: 80
|
||||
LearningRate:
|
||||
base_lr: 0.001
|
||||
schedulers:
|
||||
- !CosineDecay
|
||||
max_epochs: 96
|
||||
- !LinearWarmup
|
||||
start_factor: 0.
|
||||
epochs: 5
|
||||
@@ -0,0 +1,29 @@
|
||||
_BASE_: [
|
||||
'../../ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 5
|
||||
weights: output/ppyoloe_plus_crn_s_80e_coco_sup005/model_final
|
||||
|
||||
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_s_obj365_pretrained.pdparams
|
||||
depth_mult: 0.33
|
||||
width_mult: 0.50
|
||||
|
||||
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@5.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
epoch: 80
|
||||
LearningRate:
|
||||
base_lr: 0.001
|
||||
schedulers:
|
||||
- !CosineDecay
|
||||
max_epochs: 96
|
||||
- !LinearWarmup
|
||||
start_factor: 0.
|
||||
epochs: 5
|
||||
@@ -0,0 +1,29 @@
|
||||
_BASE_: [
|
||||
'../../ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 5
|
||||
weights: output/ppyoloe_plus_crn_s_80e_coco_sup010/model_final
|
||||
|
||||
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_s_obj365_pretrained.pdparams
|
||||
depth_mult: 0.33
|
||||
width_mult: 0.50
|
||||
|
||||
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@10.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
epoch: 80
|
||||
LearningRate:
|
||||
base_lr: 0.001
|
||||
schedulers:
|
||||
- !CosineDecay
|
||||
max_epochs: 96
|
||||
- !LinearWarmup
|
||||
start_factor: 0.
|
||||
epochs: 5
|
||||
@@ -0,0 +1,26 @@
|
||||
_BASE_: [
|
||||
'../../retinanet/retinanet_r50_fpn_2x_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 2
|
||||
weights: output/retinanet_r50_fpn_2x_coco_sup005/model_final
|
||||
|
||||
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@5.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.001
|
||||
epochs: 1
|
||||
@@ -0,0 +1,26 @@
|
||||
_BASE_: [
|
||||
'../../retinanet/retinanet_r50_fpn_2x_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 2
|
||||
weights: output/retinanet_r50_fpn_2x_coco_sup010/model_final
|
||||
|
||||
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@10.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
epoch: 24
|
||||
LearningRate:
|
||||
base_lr: 0.01
|
||||
schedulers:
|
||||
- !PiecewiseDecay
|
||||
gamma: 0.1
|
||||
milestones: [16, 22]
|
||||
- !LinearWarmup
|
||||
start_factor: 0.001
|
||||
epochs: 1
|
||||
@@ -0,0 +1,35 @@
|
||||
_BASE_: [
|
||||
'../../rtdetr/rtdetr_r50vd_6x_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 2
|
||||
weights: output/rtdetr_r50vd_6x_coco/model_final
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@5.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
worker_num: 4
|
||||
TrainReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- RandomDistort: {prob: 0.8}
|
||||
- RandomExpand: {fill_value: [123.675, 116.28, 103.53]}
|
||||
- RandomCrop: {prob: 0.8}
|
||||
- RandomFlip: {}
|
||||
batch_transforms:
|
||||
- BatchRandomResize: {target_size: [480, 512, 544, 576, 608, 640, 640, 640, 672, 704, 736, 768, 800], random_size: True, random_interp: True, keep_ratio: False}
|
||||
- NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none}
|
||||
- NormalizeBox: {}
|
||||
- BboxXYXY2XYWH: {}
|
||||
- Permute: {}
|
||||
batch_size: 4
|
||||
shuffle: true
|
||||
drop_last: true
|
||||
collate_batch: false
|
||||
use_shared_memory: false
|
||||
@@ -0,0 +1,35 @@
|
||||
_BASE_: [
|
||||
'../../rtdetr/rtdetr_r50vd_6x_coco.yml',
|
||||
]
|
||||
log_iter: 50
|
||||
snapshot_epoch: 2
|
||||
weights: output/rtdetr_r50vd_6x_coco/model_final
|
||||
|
||||
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
|
||||
TrainDataset:
|
||||
!COCODataSet
|
||||
image_dir: train2017
|
||||
anno_path: semi_annotations/instances_train2017.1@5.json
|
||||
dataset_dir: dataset/coco
|
||||
data_fields: ['image', 'gt_bbox', 'gt_class']
|
||||
|
||||
|
||||
worker_num: 4
|
||||
TrainReader:
|
||||
sample_transforms:
|
||||
- Decode: {}
|
||||
- RandomDistort: {prob: 0.8}
|
||||
- RandomExpand: {fill_value: [123.675, 116.28, 103.53]}
|
||||
- RandomCrop: {prob: 0.8}
|
||||
- RandomFlip: {}
|
||||
batch_transforms:
|
||||
- BatchRandomResize: {target_size: [480, 512, 544, 576, 608, 640, 640, 640, 672, 704, 736, 768, 800], random_size: True, random_interp: True, keep_ratio: False}
|
||||
- NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none}
|
||||
- NormalizeBox: {}
|
||||
- BboxXYXY2XYWH: {}
|
||||
- Permute: {}
|
||||
batch_size: 4
|
||||
shuffle: true
|
||||
drop_last: true
|
||||
collate_batch: false
|
||||
use_shared_memory: false
|
||||
Reference in New Issue
Block a user