更换文档检测模型
This commit is contained in:
163
paddle_detection/deploy/auto_compression/eval.py
Normal file
163
paddle_detection/deploy/auto_compression/eval.py
Normal file
@@ -0,0 +1,163 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import sys
|
||||
import numpy as np
|
||||
import argparse
|
||||
import paddle
|
||||
from ppdet.core.workspace import load_config, merge_config
|
||||
from ppdet.core.workspace import create
|
||||
from ppdet.metrics import COCOMetric, VOCMetric, KeyPointTopDownCOCOEval
|
||||
from paddleslim.auto_compression.config_helpers import load_config as load_slim_config
|
||||
from post_process import PPYOLOEPostProcess
|
||||
|
||||
|
||||
def argsparser():
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument(
|
||||
'--config_path',
|
||||
type=str,
|
||||
default=None,
|
||||
help="path of compression strategy config.",
|
||||
required=True)
|
||||
parser.add_argument(
|
||||
'--devices',
|
||||
type=str,
|
||||
default='gpu',
|
||||
help="which device used to compress.")
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def reader_wrapper(reader, input_list):
|
||||
def gen():
|
||||
for data in reader:
|
||||
in_dict = {}
|
||||
if isinstance(input_list, list):
|
||||
for input_name in input_list:
|
||||
in_dict[input_name] = data[input_name]
|
||||
elif isinstance(input_list, dict):
|
||||
for input_name in input_list.keys():
|
||||
in_dict[input_list[input_name]] = data[input_name]
|
||||
yield in_dict
|
||||
|
||||
return gen
|
||||
|
||||
|
||||
def convert_numpy_data(data, metric):
|
||||
data_all = {}
|
||||
data_all = {k: np.array(v) for k, v in data.items()}
|
||||
if isinstance(metric, VOCMetric):
|
||||
for k, v in data_all.items():
|
||||
if not isinstance(v[0], np.ndarray):
|
||||
tmp_list = []
|
||||
for t in v:
|
||||
tmp_list.append(np.array(t))
|
||||
data_all[k] = np.array(tmp_list)
|
||||
else:
|
||||
data_all = {k: np.array(v) for k, v in data.items()}
|
||||
return data_all
|
||||
|
||||
|
||||
def eval():
|
||||
|
||||
place = paddle.CUDAPlace(0) if FLAGS.devices == 'gpu' else paddle.CPUPlace()
|
||||
exe = paddle.static.Executor(place)
|
||||
|
||||
val_program, feed_target_names, fetch_targets = paddle.static.load_inference_model(
|
||||
global_config["model_dir"].rstrip('/'),
|
||||
exe,
|
||||
model_filename=global_config["model_filename"],
|
||||
params_filename=global_config["params_filename"])
|
||||
print('Loaded model from: {}'.format(global_config["model_dir"]))
|
||||
|
||||
metric = global_config['metric']
|
||||
for batch_id, data in enumerate(val_loader):
|
||||
data_all = convert_numpy_data(data, metric)
|
||||
data_input = {}
|
||||
for k, v in data.items():
|
||||
if isinstance(global_config['input_list'], list):
|
||||
if k in global_config['input_list']:
|
||||
data_input[k] = np.array(v)
|
||||
elif isinstance(global_config['input_list'], dict):
|
||||
if k in global_config['input_list'].keys():
|
||||
data_input[global_config['input_list'][k]] = np.array(v)
|
||||
|
||||
outs = exe.run(val_program,
|
||||
feed=data_input,
|
||||
fetch_list=fetch_targets,
|
||||
return_numpy=False)
|
||||
res = {}
|
||||
if 'arch' in global_config and global_config['arch'] == 'PPYOLOE':
|
||||
postprocess = PPYOLOEPostProcess(
|
||||
score_threshold=0.01, nms_threshold=0.6)
|
||||
res = postprocess(np.array(outs[0]), data_all['scale_factor'])
|
||||
else:
|
||||
for out in outs:
|
||||
v = np.array(out)
|
||||
if len(v.shape) > 1:
|
||||
res['bbox'] = v
|
||||
else:
|
||||
res['bbox_num'] = v
|
||||
metric.update(data_all, res)
|
||||
if batch_id % 100 == 0:
|
||||
print('Eval iter:', batch_id)
|
||||
metric.accumulate()
|
||||
metric.log()
|
||||
metric.reset()
|
||||
|
||||
|
||||
def main():
|
||||
global global_config
|
||||
all_config = load_slim_config(FLAGS.config_path)
|
||||
assert "Global" in all_config, "Key 'Global' not found in config file."
|
||||
global_config = all_config["Global"]
|
||||
reader_cfg = load_config(global_config['reader_config'])
|
||||
|
||||
dataset = reader_cfg['EvalDataset']
|
||||
global val_loader
|
||||
val_loader = create('EvalReader')(reader_cfg['EvalDataset'],
|
||||
reader_cfg['worker_num'],
|
||||
return_list=True)
|
||||
metric = None
|
||||
if reader_cfg['metric'] == 'COCO':
|
||||
clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
|
||||
anno_file = dataset.get_anno()
|
||||
metric = COCOMetric(
|
||||
anno_file=anno_file, clsid2catid=clsid2catid, IouType='bbox')
|
||||
elif reader_cfg['metric'] == 'VOC':
|
||||
metric = VOCMetric(
|
||||
label_list=dataset.get_label_list(),
|
||||
class_num=reader_cfg['num_classes'],
|
||||
map_type=reader_cfg['map_type'])
|
||||
elif reader_cfg['metric'] == 'KeyPointTopDownCOCOEval':
|
||||
anno_file = dataset.get_anno()
|
||||
metric = KeyPointTopDownCOCOEval(anno_file,
|
||||
len(dataset), 17, 'output_eval')
|
||||
else:
|
||||
raise ValueError("metric currently only supports COCO and VOC.")
|
||||
global_config['metric'] = metric
|
||||
|
||||
eval()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
paddle.enable_static()
|
||||
parser = argsparser()
|
||||
FLAGS = parser.parse_args()
|
||||
assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
|
||||
paddle.set_device(FLAGS.devices)
|
||||
|
||||
main()
|
||||
Reference in New Issue
Block a user