更换文档检测模型
This commit is contained in:
239
paddle_detection/deploy/cpp/include/preprocess_op.h
Normal file
239
paddle_detection/deploy/cpp/include/preprocess_op.h
Normal file
@@ -0,0 +1,239 @@
|
||||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <glog/logging.h>
|
||||
#include <yaml-cpp/yaml.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
|
||||
namespace PaddleDetection {
|
||||
|
||||
// Object for storing all preprocessed data
|
||||
class ImageBlob {
|
||||
public:
|
||||
// image width and height
|
||||
std::vector<float> im_shape_;
|
||||
// Buffer for image data after preprocessing
|
||||
std::vector<float> im_data_;
|
||||
// in net data shape(after pad)
|
||||
std::vector<float> in_net_shape_;
|
||||
// Evaluation image width and height
|
||||
// std::vector<float> eval_im_size_f_;
|
||||
// Scale factor for image size to origin image size
|
||||
std::vector<float> scale_factor_;
|
||||
// in net image after preprocessing
|
||||
cv::Mat in_net_im_;
|
||||
};
|
||||
|
||||
// Abstraction of preprocessing opration class
|
||||
class PreprocessOp {
|
||||
public:
|
||||
virtual void Init(const YAML::Node& item) = 0;
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data) = 0;
|
||||
};
|
||||
|
||||
class InitInfo : public PreprocessOp {
|
||||
public:
|
||||
virtual void Init(const YAML::Node& item) {}
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
};
|
||||
|
||||
class NormalizeImage : public PreprocessOp {
|
||||
public:
|
||||
virtual void Init(const YAML::Node& item) {
|
||||
mean_ = item["mean"].as<std::vector<float>>();
|
||||
scale_ = item["std"].as<std::vector<float>>();
|
||||
if (item["is_scale"]) is_scale_ = item["is_scale"].as<bool>();
|
||||
if (item["norm_type"]) norm_type_ = item["norm_type"].as<std::string>();
|
||||
}
|
||||
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
|
||||
private:
|
||||
// CHW or HWC
|
||||
std::vector<float> mean_;
|
||||
std::vector<float> scale_;
|
||||
bool is_scale_ = true;
|
||||
std::string norm_type_ = "mean_std";
|
||||
};
|
||||
|
||||
class Permute : public PreprocessOp {
|
||||
public:
|
||||
virtual void Init(const YAML::Node& item) {}
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
};
|
||||
|
||||
class Resize : public PreprocessOp {
|
||||
public:
|
||||
virtual void Init(const YAML::Node& item) {
|
||||
interp_ = item["interp"].as<int>();
|
||||
keep_ratio_ = item["keep_ratio"].as<bool>();
|
||||
target_size_ = item["target_size"].as<std::vector<int>>();
|
||||
}
|
||||
|
||||
// Compute best resize scale for x-dimension, y-dimension
|
||||
std::pair<float, float> GenerateScale(const cv::Mat& im);
|
||||
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
|
||||
private:
|
||||
int interp_;
|
||||
bool keep_ratio_;
|
||||
std::vector<int> target_size_;
|
||||
std::vector<int> in_net_shape_;
|
||||
};
|
||||
|
||||
class LetterBoxResize : public PreprocessOp {
|
||||
public:
|
||||
virtual void Init(const YAML::Node& item) {
|
||||
target_size_ = item["target_size"].as<std::vector<int>>();
|
||||
}
|
||||
|
||||
float GenerateScale(const cv::Mat& im);
|
||||
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
|
||||
private:
|
||||
std::vector<int> target_size_;
|
||||
std::vector<int> in_net_shape_;
|
||||
};
|
||||
// Models with FPN need input shape % stride == 0
|
||||
class PadStride : public PreprocessOp {
|
||||
public:
|
||||
virtual void Init(const YAML::Node& item) {
|
||||
stride_ = item["stride"].as<int>();
|
||||
}
|
||||
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
|
||||
private:
|
||||
int stride_;
|
||||
};
|
||||
|
||||
class TopDownEvalAffine : public PreprocessOp {
|
||||
public:
|
||||
virtual void Init(const YAML::Node& item) {
|
||||
trainsize_ = item["trainsize"].as<std::vector<int>>();
|
||||
}
|
||||
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
|
||||
private:
|
||||
int interp_ = 1;
|
||||
std::vector<int> trainsize_;
|
||||
};
|
||||
|
||||
class WarpAffine : public PreprocessOp {
|
||||
public:
|
||||
virtual void Init(const YAML::Node& item) {
|
||||
input_h_ = item["input_h"].as<int>();
|
||||
input_w_ = item["input_w"].as<int>();
|
||||
keep_res_ = item["keep_res"].as<bool>();
|
||||
}
|
||||
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
|
||||
private:
|
||||
int input_h_;
|
||||
int input_w_;
|
||||
int interp_ = 1;
|
||||
bool keep_res_ = true;
|
||||
int pad_ = 31;
|
||||
};
|
||||
|
||||
class Pad : public PreprocessOp {
|
||||
public:
|
||||
virtual void Init(const YAML::Node& item) {
|
||||
size_ = item["size"].as<std::vector<int>>();
|
||||
fill_value_ = item["fill_value"].as<std::vector<float>>();
|
||||
}
|
||||
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
|
||||
private:
|
||||
std::vector<int> size_;
|
||||
std::vector<float> fill_value_;
|
||||
};
|
||||
|
||||
void CropImg(cv::Mat& img,
|
||||
cv::Mat& crop_img,
|
||||
std::vector<int>& area,
|
||||
std::vector<float>& center,
|
||||
std::vector<float>& scale,
|
||||
float expandratio = 0.15);
|
||||
|
||||
// check whether the input size is dynamic
|
||||
bool CheckDynamicInput(const std::vector<cv::Mat>& imgs);
|
||||
|
||||
// Pad images in batch
|
||||
std::vector<cv::Mat> PadBatch(const std::vector<cv::Mat>& imgs);
|
||||
|
||||
class Preprocessor {
|
||||
public:
|
||||
void Init(const YAML::Node& config_node) {
|
||||
// initialize image info at first
|
||||
ops_["InitInfo"] = std::make_shared<InitInfo>();
|
||||
for (const auto& item : config_node) {
|
||||
auto op_name = item["type"].as<std::string>();
|
||||
|
||||
ops_[op_name] = CreateOp(op_name);
|
||||
ops_[op_name]->Init(item);
|
||||
}
|
||||
}
|
||||
|
||||
std::shared_ptr<PreprocessOp> CreateOp(const std::string& name) {
|
||||
if (name == "Resize") {
|
||||
return std::make_shared<Resize>();
|
||||
} else if (name == "LetterBoxResize") {
|
||||
return std::make_shared<LetterBoxResize>();
|
||||
} else if (name == "Permute") {
|
||||
return std::make_shared<Permute>();
|
||||
} else if (name == "NormalizeImage") {
|
||||
return std::make_shared<NormalizeImage>();
|
||||
} else if (name == "PadStride") {
|
||||
// use PadStride instead of PadBatch
|
||||
return std::make_shared<PadStride>();
|
||||
} else if (name == "TopDownEvalAffine") {
|
||||
return std::make_shared<TopDownEvalAffine>();
|
||||
} else if (name == "WarpAffine") {
|
||||
return std::make_shared<WarpAffine>();
|
||||
}else if (name == "Pad") {
|
||||
return std::make_shared<Pad>();
|
||||
}
|
||||
std::cerr << "can not find function of OP: " << name
|
||||
<< " and return: nullptr" << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void Run(cv::Mat* im, ImageBlob* data);
|
||||
|
||||
public:
|
||||
static const std::vector<std::string> RUN_ORDER;
|
||||
|
||||
private:
|
||||
std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_;
|
||||
};
|
||||
|
||||
} // namespace PaddleDetection
|
||||
Reference in New Issue
Block a user