更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,161 @@
import sys
import requests
import cv2
import random
import time
import numpy as np
import tensorrt as trt
from cuda import cudart
from pathlib import Path
from collections import OrderedDict, namedtuple
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, r, (dw, dh)
w = Path(sys.argv[1])
assert w.exists() and w.suffix in ('.engine', '.plan'), 'Wrong engine path'
names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
colors = {name: [random.randint(0, 255) for _ in range(3)] for i, name in enumerate(names)}
url = 'https://oneflow-static.oss-cn-beijing.aliyuncs.com/tripleMu/image1.jpg'
file = requests.get(url)
img = cv2.imdecode(np.frombuffer(file.content, np.uint8), 1)
_, stream = cudart.cudaStreamCreate()
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 3, 1, 1)
std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 3, 1, 1)
# Infer TensorRT Engine
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
logger = trt.Logger(trt.Logger.ERROR)
trt.init_libnvinfer_plugins(logger, namespace="")
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
model = runtime.deserialize_cuda_engine(f.read())
bindings = OrderedDict()
fp16 = False # default updated below
for index in range(model.num_bindings):
name = model.get_binding_name(index)
dtype = trt.nptype(model.get_binding_dtype(index))
shape = tuple(model.get_binding_shape(index))
data = np.empty(shape, dtype=np.dtype(dtype))
_, data_ptr = cudart.cudaMallocAsync(data.nbytes, stream)
bindings[name] = Binding(name, dtype, shape, data, data_ptr)
if model.binding_is_input(index) and dtype == np.float16:
fp16 = True
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
context = model.create_execution_context()
image = img.copy()
image, ratio, dwdh = letterbox(image, auto=False)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_copy = image.copy()
image = image.transpose((2, 0, 1))
image = np.expand_dims(image, 0)
image = np.ascontiguousarray(image)
im = image.astype(np.float32)
im /= 255
im -= mean
im /= std
_, image_ptr = cudart.cudaMallocAsync(im.nbytes, stream)
cudart.cudaMemcpyAsync(image_ptr, im.ctypes.data, im.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
# warmup for 10 times
for _ in range(10):
tmp = np.random.randn(1, 3, 640, 640).astype(np.float32)
_, tmp_ptr = cudart.cudaMallocAsync(tmp.nbytes, stream)
binding_addrs['image'] = tmp_ptr
context.execute_v2(list(binding_addrs.values()))
start = time.perf_counter()
binding_addrs['image'] = image_ptr
context.execute_v2(list(binding_addrs.values()))
print(f'Cost {(time.perf_counter() - start) * 1000}ms')
nums = bindings['num_dets'].data
boxes = bindings['det_boxes'].data
scores = bindings['det_scores'].data
classes = bindings['det_classes'].data
cudart.cudaMemcpyAsync(nums.ctypes.data,
bindings['num_dets'].ptr,
nums.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)
cudart.cudaMemcpyAsync(boxes.ctypes.data,
bindings['det_boxes'].ptr,
boxes.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)
cudart.cudaMemcpyAsync(scores.ctypes.data,
bindings['det_scores'].ptr,
scores.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)
cudart.cudaMemcpyAsync(classes.ctypes.data,
bindings['det_classes'].ptr,
classes.data.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)
cudart.cudaStreamSynchronize(stream)
cudart.cudaStreamDestroy(stream)
for i in binding_addrs.values():
cudart.cudaFree(i)
num = int(nums[0][0])
box_img = boxes[0, :num].round().astype(np.int32)
score_img = scores[0, :num]
clss_img = classes[0, :num]
for i, (box, score, clss) in enumerate(zip(box_img, score_img, clss_img)):
name = names[int(clss)]
color = colors[name]
cv2.rectangle(image_copy, box[:2].tolist(), box[2:].tolist(), color, 2)
cv2.putText(image_copy, name, (int(box[0]), int(box[1]) - 2), cv2.FONT_HERSHEY_SIMPLEX,
0.75, [225, 255, 255], thickness=2)
cv2.imshow('Result', cv2.cvtColor(image_copy, cv2.COLOR_RGB2BGR))
cv2.waitKey(0)