更换文档检测模型
This commit is contained in:
161
paddle_detection/deploy/end2end_ppyoloe/cuda-python.py
Normal file
161
paddle_detection/deploy/end2end_ppyoloe/cuda-python.py
Normal file
@@ -0,0 +1,161 @@
|
||||
import sys
|
||||
import requests
|
||||
import cv2
|
||||
import random
|
||||
import time
|
||||
import numpy as np
|
||||
import tensorrt as trt
|
||||
from cuda import cudart
|
||||
from pathlib import Path
|
||||
from collections import OrderedDict, namedtuple
|
||||
|
||||
|
||||
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
|
||||
# Resize and pad image while meeting stride-multiple constraints
|
||||
shape = im.shape[:2] # current shape [height, width]
|
||||
if isinstance(new_shape, int):
|
||||
new_shape = (new_shape, new_shape)
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
||||
r = min(r, 1.0)
|
||||
|
||||
# Compute padding
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||
|
||||
if auto: # minimum rectangle
|
||||
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
||||
|
||||
dw /= 2 # divide padding into 2 sides
|
||||
dh /= 2
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||
return im, r, (dw, dh)
|
||||
|
||||
|
||||
w = Path(sys.argv[1])
|
||||
|
||||
assert w.exists() and w.suffix in ('.engine', '.plan'), 'Wrong engine path'
|
||||
|
||||
names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
||||
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
||||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
||||
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
||||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
||||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
||||
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
||||
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
||||
'hair drier', 'toothbrush']
|
||||
colors = {name: [random.randint(0, 255) for _ in range(3)] for i, name in enumerate(names)}
|
||||
|
||||
url = 'https://oneflow-static.oss-cn-beijing.aliyuncs.com/tripleMu/image1.jpg'
|
||||
file = requests.get(url)
|
||||
img = cv2.imdecode(np.frombuffer(file.content, np.uint8), 1)
|
||||
|
||||
_, stream = cudart.cudaStreamCreate()
|
||||
|
||||
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 3, 1, 1)
|
||||
std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 3, 1, 1)
|
||||
|
||||
# Infer TensorRT Engine
|
||||
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
||||
logger = trt.Logger(trt.Logger.ERROR)
|
||||
trt.init_libnvinfer_plugins(logger, namespace="")
|
||||
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
||||
model = runtime.deserialize_cuda_engine(f.read())
|
||||
bindings = OrderedDict()
|
||||
fp16 = False # default updated below
|
||||
for index in range(model.num_bindings):
|
||||
name = model.get_binding_name(index)
|
||||
dtype = trt.nptype(model.get_binding_dtype(index))
|
||||
shape = tuple(model.get_binding_shape(index))
|
||||
data = np.empty(shape, dtype=np.dtype(dtype))
|
||||
_, data_ptr = cudart.cudaMallocAsync(data.nbytes, stream)
|
||||
bindings[name] = Binding(name, dtype, shape, data, data_ptr)
|
||||
if model.binding_is_input(index) and dtype == np.float16:
|
||||
fp16 = True
|
||||
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
||||
context = model.create_execution_context()
|
||||
|
||||
image = img.copy()
|
||||
image, ratio, dwdh = letterbox(image, auto=False)
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
image_copy = image.copy()
|
||||
|
||||
image = image.transpose((2, 0, 1))
|
||||
image = np.expand_dims(image, 0)
|
||||
image = np.ascontiguousarray(image)
|
||||
|
||||
im = image.astype(np.float32)
|
||||
im /= 255
|
||||
im -= mean
|
||||
im /= std
|
||||
|
||||
_, image_ptr = cudart.cudaMallocAsync(im.nbytes, stream)
|
||||
cudart.cudaMemcpyAsync(image_ptr, im.ctypes.data, im.nbytes,
|
||||
cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
|
||||
|
||||
# warmup for 10 times
|
||||
for _ in range(10):
|
||||
tmp = np.random.randn(1, 3, 640, 640).astype(np.float32)
|
||||
_, tmp_ptr = cudart.cudaMallocAsync(tmp.nbytes, stream)
|
||||
binding_addrs['image'] = tmp_ptr
|
||||
context.execute_v2(list(binding_addrs.values()))
|
||||
|
||||
start = time.perf_counter()
|
||||
binding_addrs['image'] = image_ptr
|
||||
context.execute_v2(list(binding_addrs.values()))
|
||||
print(f'Cost {(time.perf_counter() - start) * 1000}ms')
|
||||
|
||||
nums = bindings['num_dets'].data
|
||||
boxes = bindings['det_boxes'].data
|
||||
scores = bindings['det_scores'].data
|
||||
classes = bindings['det_classes'].data
|
||||
|
||||
cudart.cudaMemcpyAsync(nums.ctypes.data,
|
||||
bindings['num_dets'].ptr,
|
||||
nums.nbytes,
|
||||
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
|
||||
stream)
|
||||
cudart.cudaMemcpyAsync(boxes.ctypes.data,
|
||||
bindings['det_boxes'].ptr,
|
||||
boxes.nbytes,
|
||||
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
|
||||
stream)
|
||||
cudart.cudaMemcpyAsync(scores.ctypes.data,
|
||||
bindings['det_scores'].ptr,
|
||||
scores.nbytes,
|
||||
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
|
||||
stream)
|
||||
cudart.cudaMemcpyAsync(classes.ctypes.data,
|
||||
bindings['det_classes'].ptr,
|
||||
classes.data.nbytes,
|
||||
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
|
||||
stream)
|
||||
|
||||
cudart.cudaStreamSynchronize(stream)
|
||||
cudart.cudaStreamDestroy(stream)
|
||||
|
||||
for i in binding_addrs.values():
|
||||
cudart.cudaFree(i)
|
||||
|
||||
num = int(nums[0][0])
|
||||
box_img = boxes[0, :num].round().astype(np.int32)
|
||||
score_img = scores[0, :num]
|
||||
clss_img = classes[0, :num]
|
||||
for i, (box, score, clss) in enumerate(zip(box_img, score_img, clss_img)):
|
||||
name = names[int(clss)]
|
||||
color = colors[name]
|
||||
cv2.rectangle(image_copy, box[:2].tolist(), box[2:].tolist(), color, 2)
|
||||
cv2.putText(image_copy, name, (int(box[0]), int(box[1]) - 2), cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.75, [225, 255, 255], thickness=2)
|
||||
|
||||
cv2.imshow('Result', cv2.cvtColor(image_copy, cv2.COLOR_RGB2BGR))
|
||||
cv2.waitKey(0)
|
||||
Reference in New Issue
Block a user