更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,87 @@
[English](README.md) | 简体中文
# PaddleDetection检测模型在华为昇腾上的部署方案—FastDeploy
## 1. 说明
PaddleDetection支持利用FastDeploy在华为昇腾上快速部署检测模型
## 2. 使用预导出的模型列表
为了方便开发者的测试下面提供了PaddleDetection导出的各系列模型开发者可直接下载使用。其中精度指标来源于PaddleDetection中对各模型的介绍详情各参考PaddleDetection中的说明。
| 模型 | 参数大小 | 精度 | 备注 |
|:---------------------------------------------------------------- |:----- |:----- | :------ |
| [picodet_l_320_coco_lcnet](https://bj.bcebos.com/paddlehub/fastdeploy/picodet_l_320_coco_lcnet.tgz) |23MB | Box AP 42.6% |
| [ppyoloe_crn_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz) |200MB | Box AP 51.4% |
| [ppyoloe_plus_crn_m_80e_coco](https://bj.bcebos.com/fastdeploy/models/ppyoloe_plus_crn_m_80e_coco.tgz) |83.3MB | Box AP 49.8% |
| [ppyolo_r50vd_dcn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ppyolo_r50vd_dcn_1x_coco.tgz) | 180MB | Box AP 44.8% | 暂不支持TensorRT |
| [ppyolov2_r101vd_dcn_365e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ppyolov2_r101vd_dcn_365e_coco.tgz) | 282MB | Box AP 49.7% | 暂不支持TensorRT |
| [yolov3_darknet53_270e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov3_darknet53_270e_coco.tgz) |237MB | Box AP 39.1% | |
| [yolox_s_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolox_s_300e_coco.tgz) | 35MB | Box AP 40.4% | |
| [faster_rcnn_r50_vd_fpn_2x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_r50_vd_fpn_2x_coco.tgz) | 160MB | Box AP 40.8%| 暂不支持TensorRT |
| [mask_rcnn_r50_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz) | 128M | Box AP 37.4%, Mask AP 32.8%| 暂不支持TensorRT、ORT |
| [ssd_mobilenet_v1_300_120e_voc](https://bj.bcebos.com/paddlehub/fastdeploy/ssd_mobilenet_v1_300_120e_voc.tgz) | 24.9M | Box AP 73.8%| 暂不支持TensorRT、ORT |
| [ssd_vgg16_300_240e_voc](https://bj.bcebos.com/paddlehub/fastdeploy/ssd_vgg16_300_240e_voc.tgz) | 106.5M | Box AP 77.8%| 暂不支持TensorRT、ORT |
| [ssdlite_mobilenet_v1_300_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ssdlite_mobilenet_v1_300_coco.tgz) | 29.1M | | 暂不支持TensorRT、ORT |
| [rtmdet_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/rtmdet_l_300e_coco.tgz) | 224M | Box AP 51.2%| |
| [rtmdet_s_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/rtmdet_s_300e_coco.tgz) | 42M | Box AP 44.5%| |
| [yolov5_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5_l_300e_coco.tgz) | 183M | Box AP 48.9%| |
| [yolov5_s_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5_s_300e_coco.tgz) | 31M | Box AP 37.6%| |
| [yolov6_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov6_l_300e_coco.tgz) | 229M | Box AP 51.0%| |
| [yolov6_s_400e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov6_s_400e_coco.tgz) | 68M | Box AP 43.4%| |
| [yolov7_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_l_300e_coco.tgz) | 145M | Box AP 51.0%| |
| [yolov7_x_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_x_300e_coco.tgz) | 277M | Box AP 53.0%| |
| [cascade_rcnn_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/cascade_rcnn_r50_fpn_1x_coco.tgz) | 271M | Box AP 41.1%| 暂不支持TensorRT、ORT |
| [cascade_rcnn_r50_vd_fpn_ssld_2x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.tgz) | 271M | Box AP 45.0%| 暂不支持TensorRT、ORT |
| [faster_rcnn_enhance_3x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_enhance_3x_coco.tgz) | 119M | Box AP 41.5%| 暂不支持TensorRT、ORT |
| [fcos_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/fcos_r50_fpn_1x_coco.tgz) | 129M | Box AP 39.6%| 暂不支持TensorRT |
| [gfl_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/gfl_r50_fpn_1x_coco.tgz) | 128M | Box AP 41.0%| 暂不支持TensorRT |
| [ppyoloe_crn_l_80e_sliced_visdrone_640_025](https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_80e_sliced_visdrone_640_025.tgz) | 200M | Box AP 31.9%| |
| [retinanet_r101_fpn_2x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/retinanet_r101_fpn_2x_coco.tgz) | 210M | Box AP 40.6%| 暂不支持TensorRT、ORT |
| [retinanet_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/retinanet_r50_fpn_1x_coco.tgz) | 136M | Box AP 37.5%| 暂不支持TensorRT、ORT |
| [tood_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/tood_r50_fpn_1x_coco.tgz) | 130M | Box AP 42.5%| 暂不支持TensorRT、ORT |
| [ttfnet_darknet53_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ttfnet_darknet53_1x_coco.tgz) | 178M | Box AP 33.5%| 暂不支持TensorRT、ORT |
| [yolov8_x_500e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8_x_500e_coco.tgz) | 265M | Box AP 53.8%
| [yolov8_l_500e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8_l_500e_coco.tgz) | 173M | Box AP 52.8%
| [yolov8_m_500e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8_m_500e_coco.tgz) | 99M | Box AP 50.2%
| [yolov8_s_500e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8_s_500e_coco.tgz) | 43M | Box AP 44.9%
| [yolov8_n_500e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8_n_500e_coco.tgz) | 13M | Box AP 37.3%
## 3. 自行导出PaddleDetection部署模型
### 3.1 模型版本
支持[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)大于等于2.4版本的PaddleDetection模型部署。目前FastDeploy测试过成功部署的模型:
- [PP-YOLOE(含PP-YOLOE+)系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/ppyoloe)
- [PicoDet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/picodet)
- [PP-YOLO系列模型(含v2)](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/ppyolo)
- [YOLOv3系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/yolov3)
- [YOLOX系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/yolox)
- [FasterRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/faster_rcnn)
- [MaskRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/mask_rcnn)
- [SSD系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/ssd)
- [YOLOv5系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.6/configs/yolov5)
- [YOLOv6系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.6/configs/yolov6)
- [YOLOv7系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.6/configs/yolov7)
- [YOLOv8系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.6/configs/yolov8)
- [RTMDet系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.6/configs/rtmdet)
- [CascadeRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/cascade_rcnn)
- [PSSDet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/rcnn_enhance)
- [RetinaNet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/retinanet)
- [PPYOLOESOD系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/smalldet)
- [FCOS系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/fcos)
- [TTFNet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/ttfnet)
- [TOOD系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/tood)
- [GFL系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/gfl)
### 3.2 模型导出
PaddleDetection模型导出请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/deploy/EXPORT_MODEL.md)**注意**PaddleDetection导出的模型包含`model.pdmodel``model.pdiparams``infer_cfg.yml`三个文件FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息
### 3.3 导出须知
如果您是自行导出PaddleDetection推理模型请注意以下问题
- 在导出模型时不要进行NMS的去除操作正常导出即可
- 如果用于跑原生TensorRT后端非Paddle Inference后端不要添加--trt参数
- 导出模型时,不要添加`fuse_normalize=True`参数
## 4. 详细的部署示例
- [Python部署](python)
- [C++部署](cpp)

View File

@@ -0,0 +1,11 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,52 @@
[English](README.md) | 简体中文
# PaddleDetection Ascend C++部署示例
本目录下提供`infer.cc`快速完成PPYOLOE在华为昇腾上部署的示例。
## 1. 部署环境准备
在部署前需自行编译基于华为昇腾NPU的预测库参考文档[华为昇腾NPU部署环境编译](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#自行编译安装)
## 2. 部署模型准备
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleDetection部署模型](../README.md)。
## 3. 运行部署示例
以Linux上推理为例在本目录执行如下命令即可完成编译测试。
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection/deploy/fastdeploy/cpu-gpu/cpp/ascend/cpp
# 注意如果当前分支找不到下面的fastdeploy测试代码请切换到develop分支
# git checkout develop
mkdir build
cd build
# 使用编译完成的FastDeploy库编译infer_demo
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-ascend
make -j
# 下载模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz
# 华为昇腾推理
./infer_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/19339784/184326520-7075e907-10ed-4fad-93f8-52d0e35d4964.jpg", width=480px, height=320px />
</div>
## 4. 更多指南
- [PaddleDetection C++ API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/cpp/html/namespacefastdeploy_1_1vision_1_1detection.html)
- [FastDeploy部署PaddleDetection模型概览](../../)
- [Python部署](../python)
## 5. 常见问题
- [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
- [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md)
- [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md)
- [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md)
- [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)

View File

@@ -0,0 +1,62 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "deploy.yaml";
auto option = fastdeploy::RuntimeOption();
option.UseAscend();
auto model = fastdeploy::vision::detection::PPYOLOE(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
"e.g ./infer_model ./model_dir ./test.jpeg"
<< std::endl;
return -1;
}
AscendInfer(argv[1], argv[2]);
return 0;
}

View File

@@ -0,0 +1,44 @@
[English](README.md) | 简体中文
# PaddleDetection Ascend Python部署示例
本目录下提供`infer.py`快速完成PPYOLOE在华为昇腾上部署的示例。
## 1. 部署环境准备
在部署前需自行编译基于华为昇腾NPU的FastDeploy python wheel包并安装参考文档[华为昇腾NPU部署环境编译](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#自行编译安装)
## 2. 部署模型准备
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleDetection部署模型](../README.md)。
## 3. 运行部署示例
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection/deploy/fastdeploy/ascend/python
# 注意如果当前分支找不到下面的fastdeploy测试代码请切换到develop分支
# git checkout develop
# 下载模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz
# 华为昇腾推理
python infer.py --model_dir ppyoloe_crn_l_300e_coco --image_file 000000014439.jpg
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div>
## 4. 更多指南
- [PaddleDetection Python API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/object_detection.html)
- [FastDeploy部署PaddleDetection模型概览](../../)
- [C++部署](../cpp)
## 5. 常见问题
- [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
- [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md)
- [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md)
- [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md)
- [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)

View File

@@ -0,0 +1,46 @@
import cv2
import os
import fastdeploy as fd
def parse_arguments():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir", required=True, help="Path of PaddleDetection model.")
parser.add_argument(
"--image_file", type=str, required=True, help="Path of test image file.")
return parser.parse_args()
args = parse_arguments()
runtime_option = fd.RuntimeOption()
runtime_option.use_ascend()
if args.model_dir is None:
model_dir = fd.download_model(name='ppyoloe_crn_l_300e_coco')
else:
model_dir = args.model_dir
model_file = os.path.join(model_dir, "model.pdmodel")
params_file = os.path.join(model_dir, "model.pdiparams")
config_file = os.path.join(model_dir, "infer_cfg.yml")
# settting for runtime
model = fd.vision.detection.PPYOLOE(
model_file, params_file, config_file, runtime_option=runtime_option)
# predict
if args.image_file is None:
image_file = fd.utils.get_detection_test_image()
else:
image_file = args.image_file
im = cv2.imread(image_file)
result = model.predict(im)
print(result)
# visualize
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")