更换文档检测模型
This commit is contained in:
74
paddle_detection/deploy/fastdeploy/cpu-gpu/python/infer.py
Normal file
74
paddle_detection/deploy/fastdeploy/cpu-gpu/python/infer.py
Normal file
@@ -0,0 +1,74 @@
|
||||
import cv2
|
||||
import os
|
||||
|
||||
import fastdeploy as fd
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_dir", required=True, help="Path of PaddleDetection model.")
|
||||
parser.add_argument(
|
||||
"--image_file", type=str, required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support, 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_paddle_infer_backend()
|
||||
# If use original Tensorrt, not Paddle-TensorRT,
|
||||
# please try `option.use_trt_backend()`
|
||||
option.paddle_infer_option.enable_trt = True
|
||||
option.paddle_infer_option.collect_trt_shape = True
|
||||
option.trt_option.set_shape("image", [1, 3, 640, 640], [1, 3, 640, 640],
|
||||
[1, 3, 640, 640])
|
||||
option.trt_option.set_shape("scale_factor", [1, 2], [1, 2], [1, 2])
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
if args.model_dir is None:
|
||||
model_dir = fd.download_model(name='ppyoloe_crn_l_300e_coco')
|
||||
else:
|
||||
model_dir = args.model_dir
|
||||
|
||||
model_file = os.path.join(model_dir, "model.pdmodel")
|
||||
params_file = os.path.join(model_dir, "model.pdiparams")
|
||||
config_file = os.path.join(model_dir, "infer_cfg.yml")
|
||||
|
||||
# settting for runtime
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.detection.PPYOLOE(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# predict
|
||||
if args.image_file is None:
|
||||
image_file = fd.utils.get_detection_test_image()
|
||||
else:
|
||||
image_file = args.image_file
|
||||
im = cv2.imread(image_file)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# visualize
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
||||
Reference in New Issue
Block a user