更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,117 @@
[English](README.md) | 简体中文
# PaddleDetection 昆仑芯 XPU Python部署示例
本目录下提供`infer.py`快速完成PPYOLOE模型在昆仑芯 XPU上的加速部署的示例。
## 1. 说明
PaddleDetection支持利用FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署PaddleDetection模型。FastDeploy目前支持的模型系列包括但不限于`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN``SSD`,`PaddleYOLOv5`,`PaddleYOLOv6`,`PaddleYOLOv7`,`RTMDet`,`CascadeRCNN`,`PSSDet`,`RetinaNet`,`PPYOLOESOD`,`FCOS`,`TTFNet`,`TOOD`,`GFL`所有类名的构造函数和预测函数在参数上完全一致。所有模型的调用只需要参考PPYOLOE的示例即可快速调用。
## 2. 部署环境准备
在部署前需自行编译基于昆仑XPU的FastDeploy python wheel包并安装参考文档[昆仑芯XPU部署环境](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#自行编译安装)
## 3. 部署模型准备
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleDetection部署模型](../README.md)。
## 4. 运行部署示例
以Linux上推理为例在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4)
### 4.1 目标检测示例
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection/deploy/fastdeploy/kunlunxin/python
# 注意如果当前分支找不到下面的fastdeploy测试代码请切换到develop分支
# git checkout develop
# 下载PPYOLOE模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz
# 运行部署示例
# 昆仑芯推理
python infer.py --model_dir ppyoloe_crn_l_300e_coco --image_file 000000014439.jpg
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/19339784/184326520-7075e907-10ed-4fad-93f8-52d0e35d4964.jpg", width=480px, height=320px />
</div>
### 4.2 关键点检测示例
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection/deploy/fastdeploy/kunlunxin/python
# 注意如果当前分支找不到下面的fastdeploy测试代码请切换到develop分支
# git checkout develop
# 下载PP-TinyPose模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg
# 运行部署示例
python pptinypose_infer.py --model_dir PP_TinyPose_256x192_infer --image_file hrnet_demo.jpg
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px />
</div>
关于如何进行多人关键点检测,请参考[PPTinyPose Pipeline示例](./det_keypoint_unite/)
## 5. 部署示例选项说明
|参数|含义|默认值
|---|---|---|
|--model_dir|指定模型文件夹所在的路径|None|
|--image_file|指定测试图片所在的路径|None|
## 6. PaddleDetection Python接口
FastDeploy目前支持的模型系列包括但不限于`PPYOLOE`, `PicoDet`, `PaddleYOLOX`, `PPYOLO`, `FasterRCNN``SSD`,`PaddleYOLOv5`,`PaddleYOLOv6`,`PaddleYOLOv7`,`RTMDet`,`CascadeRCNN`,`PSSDet`,`RetinaNet`,`PPYOLOESOD`,`FCOS`,`TTFNet`,`TOOD`,`GFL`所有类名的构造函数和预测函数在参数上完全一致。所有模型的调用只需要参考PPYOLOE的示例即可快速调用。
### 6.1 目标检测及实例分割模型
```python
fastdeploy.vision.detection.PPYOLOE(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PicoDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOX(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.YOLOv3(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PPYOLO(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.MaskRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.SSD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOv5(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOv6(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOv7(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.RTMDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.CascadeRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PSSDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.RetinaNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PPYOLOESOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.FCOS(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.TTFNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.TOOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.GFL(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
### 6.2 关键点检测模型
```python
fd.vision.keypointdetection.PPTinyPose(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PaddleDetection模型加载和初始化其中model_file params_file为导出的Paddle部署模型格式, config_file为PaddleDetection同时导出的部署配置yaml文件
## 7. 更多指南
- [PaddleDetection Python API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/object_detection.html)
- [FastDeploy部署PaddleDetection模型概览](../../)
- [C++部署](../cpp)
## 8. 常见问题
- [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
- [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md)
- [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md)
- [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md)
- [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)

View File

@@ -0,0 +1,65 @@
[English](README.md) | 简体中文
# PP-PicoDet + PP-TinyPose (Pipeline) CPU-GPU Python部署示例
本目录下提供`det_keypoint_unite_infer.py`快速完成多人模型配置 PP-PicoDet + PP-TinyPose 在CPU/GPU以及GPU上通过TensorRT加速部署的`单图多人关键点检测`示例。执行如下脚本即可完成.**注意**: PP-TinyPose单模型独立部署请参考[PP-TinyPose 单模型](../README.md)
## 1. 部署环境准备
在部署前,需确认软硬件环境,同时下载预编译部署库,参考[FastDeploy安装文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#FastDeploy预编译库安装)安装FastDeploy预编译库。
## 2. 部署模型准备
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../../README.md)或者[自行导出PaddleDetection部署模型](../../README.md)。
## 3. 运行部署示例
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection/deploy/fastdeploy/kunlunxin/python/det_keypoint_unite
# 注意如果当前分支找不到下面的fastdeploy测试代码请切换到develop分支
# git checkout develop
# 下载PP-TinyPose模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
tar -xvf PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/000000018491.jpg
# 运行部署示例
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image_file 000000018491.jpg
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/196393343-eeb6b68f-0bc6-4927-871f-5ac610da7293.jpeg", width=640px, height=427px />
</div>
- 关于如何通过FastDeploy使用更多不同的推理后端以及如何使用不同的硬件请参考文档[如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
## 4. 部署示例选项说明
|参数|含义|默认值
|---|---|---|
|--tinypose_model_dir|指定关键点模型文件夹所在的路径|None|
|--det_model_dir|指定目标模型文件夹所在的路径|None|
|--image_file|指定测试图片所在的路径|None|
## 5. PPTinyPose 模型串联 Python接口
```python
fd.pipeline.PPTinyPose(det_model=None, pptinypose_model=None)
```
PPTinyPose Pipeline 模型加载和初始化其中det_model是使用`fd.vision.detection.PicoDet`初始化的检测模型pptinypose_model是使用`fd.vision.keypointdetection.PPTinyPose`初始化的关键点检测模型。
## 6. 更多指南
- [PaddleDetection Python API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/object_detection.html)
- [FastDeploy部署PaddleDetection模型概览](../../../)
- [C++部署](../../cpp)
## 7. 常见问题
- [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
- [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md)
- [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md)
- [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md)
- [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)

View File

@@ -0,0 +1,67 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--tinypose_model_dir",
required=True,
help="path of paddletinypose model directory")
parser.add_argument(
"--det_model_dir", help="path of paddledetection model directory")
parser.add_argument(
"--image_file", required=True, help="path of test image file.")
return parser.parse_args()
def build_picodet_option(args):
option = fd.RuntimeOption()
option.use_kunlunxin()
return option
def build_tinypose_option(args):
option = fd.RuntimeOption()
option.use_kunlunxin()
return option
args = parse_arguments()
picodet_model_file = os.path.join(args.det_model_dir, "model.pdmodel")
picodet_params_file = os.path.join(args.det_model_dir, "model.pdiparams")
picodet_config_file = os.path.join(args.det_model_dir, "infer_cfg.yml")
# setup runtime
runtime_option = build_picodet_option(args)
det_model = fd.vision.detection.PicoDet(
picodet_model_file,
picodet_params_file,
picodet_config_file,
runtime_option=runtime_option)
tinypose_model_file = os.path.join(args.tinypose_model_dir, "model.pdmodel")
tinypose_params_file = os.path.join(args.tinypose_model_dir, "model.pdiparams")
tinypose_config_file = os.path.join(args.tinypose_model_dir, "infer_cfg.yml")
# setup runtime
runtime_option = build_tinypose_option(args)
tinypose_model = fd.vision.keypointdetection.PPTinyPose(
tinypose_model_file,
tinypose_params_file,
tinypose_config_file,
runtime_option=runtime_option)
# predict
im = cv2.imread(args.image_file)
pipeline = fd.pipeline.PPTinyPose(det_model, tinypose_model)
pipeline.detection_model_score_threshold = 0.5
pipeline_result = pipeline.predict(im)
print("Paddle TinyPose Result:\n", pipeline_result)
# visualize
vis_im = fd.vision.vis_keypoint_detection(
im, pipeline_result, conf_threshold=0.2)
cv2.imwrite("visualized_result.jpg", vis_im)
print("TinyPose visualized result save in ./visualized_result.jpg")

View File

@@ -0,0 +1,45 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir", required=True, help="Path of PaddleDetection model.")
parser.add_argument(
"--image_file", type=str, required=True, help="Path of test image file.")
return parser.parse_args()
args = parse_arguments()
runtime_option = fd.RuntimeOption()
runtime_option.use_kunlunxin()
if args.model_dir is None:
model_dir = fd.download_model(name='ppyoloe_crn_l_300e_coco')
else:
model_dir = args.model_dir
model_file = os.path.join(model_dir, "model.pdmodel")
params_file = os.path.join(model_dir, "model.pdiparams")
config_file = os.path.join(model_dir, "infer_cfg.yml")
# settting for runtime
model = fd.vision.detection.PPYOLOE(
model_file, params_file, config_file, runtime_option=runtime_option)
# predict
if args.image_file is None:
image_file = fd.utils.get_detection_test_image()
else:
image_file = args.image_file
im = cv2.imread(image_file)
result = model.predict(im)
print(result)
# visualize
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")

View File

@@ -0,0 +1,42 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir",
required=True,
help="path of PP-TinyPose model directory")
parser.add_argument(
"--image_file", required=True, help="path of test image file.")
return parser.parse_args()
args = parse_arguments()
runtime_option = fd.RuntimeOption()
runtime_option.use_kunlunxin()
tinypose_model_file = os.path.join(args.model_dir, "model.pdmodel")
tinypose_params_file = os.path.join(args.model_dir, "model.pdiparams")
tinypose_config_file = os.path.join(args.model_dir, "infer_cfg.yml")
# setup runtime
tinypose_model = fd.vision.keypointdetection.PPTinyPose(
tinypose_model_file,
tinypose_params_file,
tinypose_config_file,
runtime_option=runtime_option)
# predict
im = cv2.imread(args.image_file)
tinypose_result = tinypose_model.predict(im)
print("Paddle TinyPose Result:\n", tinypose_result)
# visualize
vis_im = fd.vision.vis_keypoint_detection(
im, tinypose_result, conf_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("TinyPose visualized result save in ./visualized_result.jpg")