更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,11 @@
CMAKE_MINIMUM_REQUIRED(VERSION 3.10)
project(infer_demo)
set(CMAKE_CXX_STANDARD 14)
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeployConfig.cmake)
include_directories(${FastDeploy_INCLUDE_DIRS})
add_executable(infer_demo infer.cc)
target_link_libraries(infer_demo ${FastDeploy_LIBS})

View File

@@ -0,0 +1,47 @@
[English](README.md) | 简体中文
# PaddleDetection RKNPU2 C++部署示例
本目录下用于展示PaddleDetection系列模型在RKNPU2上的部署以下的部署过程以PPYOLOE为例子。
## 1. 部署环境准备
在部署前,需确认以下两个步骤:
1. 软硬件环境满足要求
2. 根据开发环境下载预编译部署库或者从头编译FastDeploy仓库
以上步骤请参考[RK2代NPU部署库编译](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/rknpu2/rknpu2.md)实现
## 2. 部署模型准备
模型转换代码请参考[模型转换文档](../README.md)
## 3. 运行部署示例
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection/deploy/fastdeploy/rockchip/rknpu2/cpp
# 注意如果当前分支找不到下面的fastdeploy测试代码请切换到develop分支
# git checkout develop
# 编译部署示例
mkdir build && cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j8
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/ppyoloe_plus_crn_s_80e_coco.zip
unzip ppyoloe_plus_crn_s_80e_coco.zip
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# 运行部署示例
# CPU推理
./infer_demo ./ppyoloe_plus_crn_s_80e_coco 000000014439.jpg 0
# RKNPU2推理
./infer_demo ./ppyoloe_plus_crn_s_80e_coco 000000014439.jpg 1
```
## 4. 更多指南
RKNPU上对模型的输入要求是使用NHWC格式且图片归一化操作会在转RKNN模型时内嵌到模型中因此我们在使用FastDeploy部署时需要先调用DisableNormalizeAndPermute(C++)或`disable_normalize_and_permute(Python),在预处理阶段禁用归一化以及数据格式的转换。
- [Python部署](../python)
- [转换PaddleDetection RKNN模型文档](../README.md)

View File

@@ -0,0 +1,96 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
void ONNXInfer(const std::string& model_dir, const std::string& image_file) {
std::string model_file = model_dir + "/ppyoloe_plus_crn_s_80e_coco.onnx";
std::string params_file;
std::string config_file = model_dir + "/infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseCpu();
auto format = fastdeploy::ModelFormat::ONNX;
auto model = fastdeploy::vision::detection::PPYOLOE(
model_file, params_file, config_file, option, format);
fastdeploy::TimeCounter tc;
tc.Start();
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
tc.End();
tc.PrintInfo("PPDet in ONNX");
std::cout << res.Str() << std::endl;
cv::imwrite("infer_onnx.jpg", vis_im);
std::cout << "Visualized result saved in ./infer_onnx.jpg" << std::endl;
}
void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) {
auto model_file =
model_dir + "/ppyoloe_plus_crn_s_80e_coco_rk3588_quantized.rknn";
auto params_file = "";
auto config_file = model_dir + "/infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseRKNPU2();
auto format = fastdeploy::ModelFormat::RKNN;
auto model = fastdeploy::vision::detection::PPYOLOE(
model_file, params_file, config_file, option, format);
model.GetPreprocessor().DisablePermute();
model.GetPreprocessor().DisableNormalize();
model.GetPostprocessor().ApplyNMS();
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
fastdeploy::TimeCounter tc;
tc.Start();
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
tc.End();
tc.PrintInfo("PPDet in RKNPU2");
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("infer_rknpu2.jpg", vis_im);
std::cout << "Visualized result saved in ./infer_rknpu2.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
"e.g ./infer_demo ./model_dir ./test.jpeg"
<< std::endl;
return -1;
}
if (std::atoi(argv[3]) == 0) {
ONNXInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 1) {
RKNPU2Infer(argv[1], argv[2]);
}
return 0;
}