更换文档检测模型
This commit is contained in:
@@ -0,0 +1,11 @@
|
||||
CMAKE_MINIMUM_REQUIRED(VERSION 3.10)
|
||||
project(infer_demo)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 14)
|
||||
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeployConfig.cmake)
|
||||
include_directories(${FastDeploy_INCLUDE_DIRS})
|
||||
add_executable(infer_demo infer.cc)
|
||||
target_link_libraries(infer_demo ${FastDeploy_LIBS})
|
||||
@@ -0,0 +1,47 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PaddleDetection RKNPU2 C++部署示例
|
||||
|
||||
本目录下用于展示PaddleDetection系列模型在RKNPU2上的部署,以下的部署过程以PPYOLOE为例子。
|
||||
|
||||
## 1. 部署环境准备
|
||||
在部署前,需确认以下两个步骤:
|
||||
|
||||
1. 软硬件环境满足要求
|
||||
2. 根据开发环境,下载预编译部署库或者从头编译FastDeploy仓库
|
||||
|
||||
以上步骤请参考[RK2代NPU部署库编译](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/rknpu2/rknpu2.md)实现
|
||||
|
||||
## 2. 部署模型准备
|
||||
|
||||
模型转换代码请参考[模型转换文档](../README.md)
|
||||
|
||||
## 3. 运行部署示例
|
||||
|
||||
```bash
|
||||
# 下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/PaddleDetection.git
|
||||
cd PaddleDetection/deploy/fastdeploy/rockchip/rknpu2/cpp
|
||||
# 注意:如果当前分支找不到下面的fastdeploy测试代码,请切换到develop分支
|
||||
# git checkout develop
|
||||
|
||||
# 编译部署示例
|
||||
mkdir build && cd build
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j8
|
||||
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/ppyoloe_plus_crn_s_80e_coco.zip
|
||||
unzip ppyoloe_plus_crn_s_80e_coco.zip
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# 运行部署示例
|
||||
# CPU推理
|
||||
./infer_demo ./ppyoloe_plus_crn_s_80e_coco 000000014439.jpg 0
|
||||
# RKNPU2推理
|
||||
./infer_demo ./ppyoloe_plus_crn_s_80e_coco 000000014439.jpg 1
|
||||
```
|
||||
|
||||
## 4. 更多指南
|
||||
RKNPU上对模型的输入要求是使用NHWC格式,且图片归一化操作会在转RKNN模型时,内嵌到模型中,因此我们在使用FastDeploy部署时,需要先调用DisableNormalizeAndPermute(C++)或`disable_normalize_and_permute(Python),在预处理阶段禁用归一化以及数据格式的转换。
|
||||
|
||||
- [Python部署](../python)
|
||||
- [转换PaddleDetection RKNN模型文档](../README.md)
|
||||
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
void ONNXInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::string model_file = model_dir + "/ppyoloe_plus_crn_s_80e_coco.onnx";
|
||||
std::string params_file;
|
||||
std::string config_file = model_dir + "/infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseCpu();
|
||||
auto format = fastdeploy::ModelFormat::ONNX;
|
||||
|
||||
auto model = fastdeploy::vision::detection::PPYOLOE(
|
||||
model_file, params_file, config_file, option, format);
|
||||
|
||||
fastdeploy::TimeCounter tc;
|
||||
tc.Start();
|
||||
auto im = cv::imread(image_file);
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
tc.End();
|
||||
tc.PrintInfo("PPDet in ONNX");
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
cv::imwrite("infer_onnx.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./infer_onnx.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file =
|
||||
model_dir + "/ppyoloe_plus_crn_s_80e_coco_rk3588_quantized.rknn";
|
||||
auto params_file = "";
|
||||
auto config_file = model_dir + "/infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseRKNPU2();
|
||||
|
||||
auto format = fastdeploy::ModelFormat::RKNN;
|
||||
|
||||
auto model = fastdeploy::vision::detection::PPYOLOE(
|
||||
model_file, params_file, config_file, option, format);
|
||||
|
||||
model.GetPreprocessor().DisablePermute();
|
||||
model.GetPreprocessor().DisableNormalize();
|
||||
model.GetPostprocessor().ApplyNMS();
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
fastdeploy::TimeCounter tc;
|
||||
tc.Start();
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
tc.End();
|
||||
tc.PrintInfo("PPDet in RKNPU2");
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("infer_rknpu2.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./infer_rknpu2.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_demo ./model_dir ./test.jpeg"
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
ONNXInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
RKNPU2Infer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user