更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,111 @@
[English](README.md) | 简体中文
# PaddleDetection 服务化部署示例
本文档以PP-YOLOE模型(ppyoloe_crn_l_300e_coco)为例进行详细介绍。其他PaddleDetection模型都已支持服务化部署只需将下述命令中的模型和配置名字修改成要部署模型的名字。
PaddleDetection模型导出和预训练模型下载请看[PaddleDetection模型部署](../README.md)文档。
## 1. 部署环境准备
在服务化部署前,需确认
- 1. 服务化镜像的软硬件环境要求和镜像拉取命令请参考[FastDeploy服务化部署](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/README_CN.md)
## 2. 启动服务
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection/deploy/fastdeploy/serving
#下载PPYOLOE模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz
# 将配置文件放入预处理目录
mv ppyoloe_crn_l_300e_coco/infer_cfg.yml models/preprocess/1/
# 将模型放入 models/runtime/1目录下, 并重命名为model.pdmodel和model.pdiparams
mv ppyoloe_crn_l_300e_coco/model.pdmodel models/runtime/1/model.pdmodel
mv ppyoloe_crn_l_300e_coco/model.pdiparams models/runtime/1/model.pdiparams
# 将ppdet和runtime中的ppyoloe配置文件重命名成标准的config名字
# 其他模型比如faster_rcc就将faster_rcnn_config.pbtxt重命名为config.pbtxt
cp models/ppdet/ppyoloe_config.pbtxt models/ppdet/config.pbtxt
cp models/runtime/ppyoloe_runtime_config.pbtxt models/runtime/config.pbtxt
# 注意: 由于mask_rcnn模型多一个输出需要将后处理目录(models/postprocess)中的mask_config.pbtxt重命名为config.pbtxt
# 拉取fastdeploy镜像(x.y.z为镜像版本号需替换成fastdeploy版本数字)
# GPU镜像
docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10
# CPU镜像
docker pull paddlepaddle/fastdeploy:z.y.z-cpu-only-21.10
# 运行容器.容器名字为 fd_serving, 并挂载当前目录为容器的 /serving 目录
nvidia-docker run -it --net=host --name fd_serving --shm-size="1g" -v `pwd`/:/serving registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10 bash
# 启动服务(不设置CUDA_VISIBLE_DEVICES环境变量会拥有所有GPU卡的调度权限)
CUDA_VISIBLE_DEVICES=0 fastdeployserver --model-repository=/serving/models
```
>> **注意**:
>> 由于mask_rcnn模型多一个输出部署mask_rcnn需要将后处理目录(models/postprocess)中的mask_config.pbtxt重命名为config.pbtxt
>> 拉取镜像请看[服务化部署主文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/README_CN.md)
>> 执行fastdeployserver启动服务出现"Address already in use", 请使用`--grpc-port`指定grpc端口号来启动服务同时更改客户端示例中的请求端口号.
>> 其他启动参数可以使用 fastdeployserver --help 查看
服务启动成功后, 会有以下输出:
```
......
I0928 04:51:15.784517 206 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001
I0928 04:51:15.785177 206 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000
I0928 04:51:15.826578 206 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002
```
## 3. 客户端请求
在物理机器中执行以下命令发送grpc请求并输出结果
```
#下载测试图片
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
#安装客户端依赖
python3 -m pip install tritonclient[all]
# 发送请求
python3 paddledet_grpc_client.py
```
发送请求成功后会返回json格式的检测结果并打印输出:
```
output_name: DET_RESULT
[[159.93016052246094, 82.35527038574219, 199.8546600341797, 164.68682861328125],
... ...,
[60.200584411621094, 123.73260498046875, 108.83859252929688, 169.07467651367188]]
```
## 4. 配置修改
当前默认配置在GPU上运行Paddle引擎 如果要在CPU或其他推理引擎上运行。 需要修改`models/runtime/config.pbtxt`中配置,详情请参考[配置文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/model_configuration.md)
## 5. 使用VisualDL进行可视化部署
可以使用VisualDL进行[Serving可视化部署](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/vdl_management.md)上述启动服务、配置修改以及客户端请求的操作都可以基于VisualDL进行。
通过VisualDL的可视化界面对PaddleDetection进行服务化部署只需要如下三步
```text
1. 载入模型库:./vision/detection/paddledetection/serving/models
2. 下载模型资源文件点击preprocess模型点击版本号1添加预训练模型选择检测模型ppyoloe_crn_l_300e_coco进行下载此时preprocess中将会有资源文件infer_cfg.yml。点击runtime模型点击版本号1添加预训练模型选择检测模型ppyoloe_crn_l_300e_coco进行下载此时runtime中将会有资源文件model.pdmodel和model.pdiparams。
3. 设置启动配置文件点击ensemble配置按钮选择配置文件ppyoloe_config.pbtxt并设为启动配置文件。点击runtime模型选择配置文件ppyoloe_runtime_config.pbtxt并设为启动配置文件。
4. 启动服务:点击启动服务按钮,输入启动参数。
```
<p align="center">
<img src="https://user-images.githubusercontent.com/22424850/211710983-2d1f1427-6738-409d-903b-2b4e4ab6cbfc.gif" width="100%"/>
</p>

View File

@@ -0,0 +1,110 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import numpy as np
import time
import fastdeploy as fd
# triton_python_backend_utils is available in every Triton Python model. You
# need to use this module to create inference requests and responses. It also
# contains some utility functions for extracting information from model_config
# and converting Triton input/output types to numpy types.
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to intialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
# You must parse model_config. JSON string is not parsed here
self.model_config = json.loads(args['model_config'])
print("model_config:", self.model_config)
self.input_names = []
for input_config in self.model_config["input"]:
self.input_names.append(input_config["name"])
print("postprocess input names:", self.input_names)
self.output_names = []
self.output_dtype = []
for output_config in self.model_config["output"]:
self.output_names.append(output_config["name"])
dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
self.output_dtype.append(dtype)
print("postprocess output names:", self.output_names)
self.postprocess_ = fd.vision.detection.PaddleDetPostprocessor()
def execute(self, requests):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
responses = []
for request in requests:
infer_outputs = []
for name in self.input_names:
infer_output = pb_utils.get_input_tensor_by_name(request, name)
if infer_output:
infer_output = infer_output.as_numpy()
infer_outputs.append(infer_output)
results = self.postprocess_.run(infer_outputs)
r_str = fd.vision.utils.fd_result_to_json(results)
r_np = np.array(r_str, dtype=np.object_)
out_tensor = pb_utils.Tensor(self.output_names[0], r_np)
inference_response = pb_utils.InferenceResponse(
output_tensors=[out_tensor, ])
responses.append(inference_response)
return responses
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows
the model to perform any necessary clean ups before exit.
"""
print('Cleaning up...')

View File

@@ -0,0 +1,30 @@
name: "postprocess"
backend: "python"
input [
{
name: "post_input1"
data_type: TYPE_FP32
dims: [ -1, 6 ]
},
{
name: "post_input2"
data_type: TYPE_INT32
dims: [ -1 ]
}
]
output [
{
name: "post_output"
data_type: TYPE_STRING
dims: [ -1 ]
}
]
instance_group [
{
count: 1
kind: KIND_CPU
}
]

View File

@@ -0,0 +1,34 @@
backend: "python"
input [
{
name: "post_input1"
data_type: TYPE_FP32
dims: [ -1, 6 ]
},
{
name: "post_input2"
data_type: TYPE_INT32
dims: [ -1 ]
},
{
name: "post_input3"
data_type: TYPE_INT32
dims: [ -1, -1, -1 ]
}
]
output [
{
name: "post_output"
data_type: TYPE_STRING
dims: [ -1 ]
}
]
instance_group [
{
count: 1
kind: KIND_CPU
}
]

View File

@@ -0,0 +1,3 @@
# PaddleDetection Pipeline
The pipeline directory does not have model files, but a version number directory needs to be maintained.

View File

@@ -0,0 +1,80 @@
platform: "ensemble"
input [
{
name: "INPUT"
data_type: TYPE_UINT8
dims: [ -1, -1, -1, 3 ]
}
]
output [
{
name: "DET_RESULT"
data_type: TYPE_STRING
dims: [ -1 ]
}
]
ensemble_scheduling {
step [
{
model_name: "preprocess"
model_version: 1
input_map {
key: "preprocess_input"
value: "INPUT"
}
output_map {
key: "preprocess_output1"
value: "RUNTIME_INPUT1"
}
output_map {
key: "preprocess_output2"
value: "RUNTIME_INPUT2"
}
output_map {
key: "preprocess_output3"
value: "RUNTIME_INPUT3"
}
},
{
model_name: "runtime"
model_version: 1
input_map {
key: "image"
value: "RUNTIME_INPUT1"
}
input_map {
key: "scale_factor"
value: "RUNTIME_INPUT2"
}
input_map {
key: "im_shape"
value: "RUNTIME_INPUT3"
}
output_map {
key: "concat_12.tmp_0"
value: "RUNTIME_OUTPUT1"
}
output_map {
key: "concat_8.tmp_0"
value: "RUNTIME_OUTPUT2"
}
},
{
model_name: "postprocess"
model_version: 1
input_map {
key: "post_input1"
value: "RUNTIME_OUTPUT1"
}
input_map {
key: "post_input2"
value: "RUNTIME_OUTPUT2"
}
output_map {
key: "post_output"
value: "DET_RESULT"
}
}
]
}

View File

@@ -0,0 +1,88 @@
platform: "ensemble"
input [
{
name: "INPUT"
data_type: TYPE_UINT8
dims: [ -1, -1, -1, 3 ]
}
]
output [
{
name: "DET_RESULT"
data_type: TYPE_STRING
dims: [ -1 ]
}
]
ensemble_scheduling {
step [
{
model_name: "preprocess"
model_version: 1
input_map {
key: "preprocess_input"
value: "INPUT"
}
output_map {
key: "preprocess_output1"
value: "RUNTIME_INPUT1"
}
output_map {
key: "preprocess_output2"
value: "RUNTIME_INPUT2"
}
output_map {
key: "preprocess_output3"
value: "RUNTIME_INPUT3"
}
},
{
model_name: "runtime"
model_version: 1
input_map {
key: "image"
value: "RUNTIME_INPUT1"
}
input_map {
key: "scale_factor"
value: "RUNTIME_INPUT2"
}
input_map {
key: "im_shape"
value: "RUNTIME_INPUT3"
}
output_map {
key: "concat_9.tmp_0"
value: "RUNTIME_OUTPUT1"
}
output_map {
key: "concat_5.tmp_0"
value: "RUNTIME_OUTPUT2"
},
output_map {
key: "tmp_109"
value: "RUNTIME_OUTPUT3"
}
},
{
model_name: "postprocess"
model_version: 1
input_map {
key: "post_input1"
value: "RUNTIME_OUTPUT1"
}
input_map {
key: "post_input2"
value: "RUNTIME_OUTPUT2"
}
input_map {
key: "post_input3"
value: "RUNTIME_OUTPUT3"
}
output_map {
key: "post_output"
value: "DET_RESULT"
}
}
]
}

View File

@@ -0,0 +1,80 @@
platform: "ensemble"
input [
{
name: "INPUT"
data_type: TYPE_UINT8
dims: [ -1, -1, -1, 3 ]
}
]
output [
{
name: "DET_RESULT"
data_type: TYPE_STRING
dims: [ -1 ]
}
]
ensemble_scheduling {
step [
{
model_name: "preprocess"
model_version: 1
input_map {
key: "preprocess_input"
value: "INPUT"
}
output_map {
key: "preprocess_output1"
value: "RUNTIME_INPUT1"
}
output_map {
key: "preprocess_output2"
value: "RUNTIME_INPUT2"
}
output_map {
key: "preprocess_output3"
value: "RUNTIME_INPUT3"
}
},
{
model_name: "runtime"
model_version: 1
input_map {
key: "image"
value: "RUNTIME_INPUT1"
}
input_map {
key: "scale_factor"
value: "RUNTIME_INPUT2"
}
input_map {
key: "im_shape"
value: "RUNTIME_INPUT3"
}
output_map {
key: "matrix_nms_0.tmp_0"
value: "RUNTIME_OUTPUT1"
}
output_map {
key: "matrix_nms_0.tmp_2"
value: "RUNTIME_OUTPUT2"
}
},
{
model_name: "postprocess"
model_version: 1
input_map {
key: "post_input1"
value: "RUNTIME_OUTPUT1"
}
input_map {
key: "post_input2"
value: "RUNTIME_OUTPUT2"
}
output_map {
key: "post_output"
value: "DET_RESULT"
}
}
]
}

View File

@@ -0,0 +1,72 @@
platform: "ensemble"
input [
{
name: "INPUT"
data_type: TYPE_UINT8
dims: [ -1, -1, -1, 3 ]
}
]
output [
{
name: "DET_RESULT"
data_type: TYPE_STRING
dims: [ -1 ]
}
]
ensemble_scheduling {
step [
{
model_name: "preprocess"
model_version: 1
input_map {
key: "preprocess_input"
value: "INPUT"
}
output_map {
key: "preprocess_output1"
value: "RUNTIME_INPUT1"
}
output_map {
key: "preprocess_output2"
value: "RUNTIME_INPUT2"
}
},
{
model_name: "runtime"
model_version: 1
input_map {
key: "image"
value: "RUNTIME_INPUT1"
}
input_map {
key: "scale_factor"
value: "RUNTIME_INPUT2"
}
output_map {
key: "multiclass_nms3_0.tmp_0"
value: "RUNTIME_OUTPUT1"
}
output_map {
key: "multiclass_nms3_0.tmp_2"
value: "RUNTIME_OUTPUT2"
}
},
{
model_name: "postprocess"
model_version: 1
input_map {
key: "post_input1"
value: "RUNTIME_OUTPUT1"
}
input_map {
key: "post_input2"
value: "RUNTIME_OUTPUT2"
}
output_map {
key: "post_output"
value: "DET_RESULT"
}
}
]
}

View File

@@ -0,0 +1,114 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import numpy as np
import os
import fastdeploy as fd
# triton_python_backend_utils is available in every Triton Python model. You
# need to use this module to create inference requests and responses. It also
# contains some utility functions for extracting information from model_config
# and converting Triton input/output types to numpy types.
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to intialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
# You must parse model_config. JSON string is not parsed here
self.model_config = json.loads(args['model_config'])
print("model_config:", self.model_config)
self.input_names = []
for input_config in self.model_config["input"]:
self.input_names.append(input_config["name"])
print("preprocess input names:", self.input_names)
self.output_names = []
self.output_dtype = []
for output_config in self.model_config["output"]:
self.output_names.append(output_config["name"])
# dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
# self.output_dtype.append(dtype)
self.output_dtype.append(output_config["data_type"])
print("preprocess output names:", self.output_names)
# init PaddleClasPreprocess class
yaml_path = os.path.abspath(os.path.dirname(
__file__)) + "/infer_cfg.yml"
self.preprocess_ = fd.vision.detection.PaddleDetPreprocessor(yaml_path)
def execute(self, requests):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
responses = []
for request in requests:
data = pb_utils.get_input_tensor_by_name(request,
self.input_names[0])
data = data.as_numpy()
outputs = self.preprocess_.run(data)
output_tensors = []
for idx, name in enumerate(self.output_names):
dlpack_tensor = outputs[idx].to_dlpack()
output_tensor = pb_utils.Tensor.from_dlpack(name,
dlpack_tensor)
output_tensors.append(output_tensor)
inference_response = pb_utils.InferenceResponse(
output_tensors=output_tensors)
responses.append(inference_response)
return responses
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows
the model to perform any necessary clean ups before exit.
"""
print('Cleaning up...')

View File

@@ -0,0 +1,35 @@
name: "preprocess"
backend: "python"
input [
{
name: "preprocess_input"
data_type: TYPE_UINT8
dims: [ -1, -1, -1, 3 ]
}
]
output [
{
name: "preprocess_output1"
data_type: TYPE_FP32
dims: [ -1, 3, -1, -1 ]
},
{
name: "preprocess_output2"
data_type: TYPE_FP32
dims: [ -1, 2 ]
},
{
name: "preprocess_output3"
data_type: TYPE_FP32
dims: [ -1, 2 ]
}
]
instance_group [
{
count: 1
kind: KIND_CPU
}
]

View File

@@ -0,0 +1,5 @@
# Runtime Directory
This directory holds the model files.
Paddle models must be model.pdmodel and model.pdiparams files.
ONNX models must be model.onnx files.

View File

@@ -0,0 +1,58 @@
backend: "fastdeploy"
# Input configuration of the model
input [
{
# input name
name: "image"
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
data_type: TYPE_FP32
# input shape The batch dimension is omitted and the actual shape is [batch, c, h, w]
dims: [ -1, 3, -1, -1 ]
},
{
name: "scale_factor"
data_type: TYPE_FP32
dims: [ -1, 2 ]
},
{
name: "im_shape"
data_type: TYPE_FP32
dims: [ -1, 2 ]
}
]
# The output of the model is configured in the same format as the input
output [
{
name: "concat_12.tmp_0"
data_type: TYPE_FP32
dims: [ -1, 6 ]
},
{
name: "concat_8.tmp_0"
data_type: TYPE_INT32
dims: [ -1 ]
}
]
# Number of instances of the model
instance_group [
{
# The number of instances is 1
count: 1
# Use GPU, CPU inference option is:KIND_CPU
kind: KIND_GPU
# The instance is deployed on the 0th GPU card
gpus: [0]
}
]
optimization {
execution_accelerators {
gpu_execution_accelerator : [ {
# use Paddle engine
name: "paddle",
}
]
}}

View File

@@ -0,0 +1,63 @@
backend: "fastdeploy"
# Input configuration of the model
input [
{
# input name
name: "image"
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
data_type: TYPE_FP32
# input shape The batch dimension is omitted and the actual shape is [batch, c, h, w]
dims: [ -1, 3, -1, -1 ]
},
{
name: "scale_factor"
data_type: TYPE_FP32
dims: [ -1, 2 ]
},
{
name: "im_shape"
data_type: TYPE_FP32
dims: [ -1, 2 ]
}
]
# The output of the model is configured in the same format as the input
output [
{
name: "concat_9.tmp_0"
data_type: TYPE_FP32
dims: [ -1, 6 ]
},
{
name: "concat_5.tmp_0"
data_type: TYPE_INT32
dims: [ -1 ]
},
{
name: "tmp_109"
data_type: TYPE_INT32
dims: [ -1, -1, -1 ]
}
]
# Number of instances of the model
instance_group [
{
# The number of instances is 1
count: 1
# Use GPU, CPU inference option is:KIND_CPU
kind: KIND_GPU
# The instance is deployed on the 0th GPU card
gpus: [0]
}
]
optimization {
execution_accelerators {
gpu_execution_accelerator : [ {
# use Paddle engine
name: "paddle",
}
]
}}

View File

@@ -0,0 +1,58 @@
backend: "fastdeploy"
# Input configuration of the model
input [
{
# input name
name: "image"
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
data_type: TYPE_FP32
# input shape The batch dimension is omitted and the actual shape is [batch, c, h, w]
dims: [ -1, 3, -1, -1 ]
},
{
name: "scale_factor"
data_type: TYPE_FP32
dims: [ -1, 2 ]
},
{
name: "im_shape"
data_type: TYPE_FP32
dims: [ -1, 2 ]
}
]
# The output of the model is configured in the same format as the input
output [
{
name: "matrix_nms_0.tmp_0"
data_type: TYPE_FP32
dims: [ -1, 6 ]
},
{
name: "matrix_nms_0.tmp_2"
data_type: TYPE_INT32
dims: [ -1 ]
}
]
# Number of instances of the model
instance_group [
{
# The number of instances is 1
count: 1
# Use GPU, CPU inference option is:KIND_CPU
kind: KIND_GPU
# The instance is deployed on the 0th GPU card
gpus: [0]
}
]
optimization {
execution_accelerators {
gpu_execution_accelerator : [ {
# use Paddle engine
name: "paddle",
}
]
}}

View File

@@ -0,0 +1,55 @@
# optional, If name is specified it must match the name of the model repository directory containing the model.
name: "runtime"
backend: "fastdeploy"
# Input configuration of the model
input [
{
# input name
name: "image"
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
data_type: TYPE_FP32
# input shape The batch dimension is omitted and the actual shape is [batch, c, h, w]
dims: [ -1, 3, -1, -1 ]
},
{
name: "scale_factor"
data_type: TYPE_FP32
dims: [ -1, 2 ]
}
]
# The output of the model is configured in the same format as the input
output [
{
name: "multiclass_nms3_0.tmp_0"
data_type: TYPE_FP32
dims: [ -1, 6 ]
},
{
name: "multiclass_nms3_0.tmp_2"
data_type: TYPE_INT32
dims: [ -1 ]
}
]
# Number of instances of the model
instance_group [
{
# The number of instances is 1
count: 1
# Use GPU, CPU inference option is:KIND_CPU
kind: KIND_GPU
# The instance is deployed on the 0th GPU card
gpus: [0]
}
]
optimization {
execution_accelerators {
gpu_execution_accelerator : [ {
# use Paddle engine
name: "paddle",
}
]
}}

View File

@@ -0,0 +1,109 @@
import logging
import numpy as np
import time
from typing import Optional
import cv2
import json
from tritonclient import utils as client_utils
from tritonclient.grpc import InferenceServerClient, InferInput, InferRequestedOutput, service_pb2_grpc, service_pb2
LOGGER = logging.getLogger("run_inference_on_triton")
class SyncGRPCTritonRunner:
DEFAULT_MAX_RESP_WAIT_S = 120
def __init__(
self,
server_url: str,
model_name: str,
model_version: str,
*,
verbose=False,
resp_wait_s: Optional[float]=None, ):
self._server_url = server_url
self._model_name = model_name
self._model_version = model_version
self._verbose = verbose
self._response_wait_t = self.DEFAULT_MAX_RESP_WAIT_S if resp_wait_s is None else resp_wait_s
self._client = InferenceServerClient(
self._server_url, verbose=self._verbose)
error = self._verify_triton_state(self._client)
if error:
raise RuntimeError(
f"Could not communicate to Triton Server: {error}")
LOGGER.debug(
f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} "
f"are up and ready!")
model_config = self._client.get_model_config(self._model_name,
self._model_version)
model_metadata = self._client.get_model_metadata(self._model_name,
self._model_version)
LOGGER.info(f"Model config {model_config}")
LOGGER.info(f"Model metadata {model_metadata}")
for tm in model_metadata.inputs:
print("tm:", tm)
self._inputs = {tm.name: tm for tm in model_metadata.inputs}
self._input_names = list(self._inputs)
self._outputs = {tm.name: tm for tm in model_metadata.outputs}
self._output_names = list(self._outputs)
self._outputs_req = [
InferRequestedOutput(name) for name in self._outputs
]
def Run(self, inputs):
"""
Args:
inputs: list, Each value corresponds to an input name of self._input_names
Returns:
results: dict, {name : numpy.array}
"""
infer_inputs = []
for idx, data in enumerate(inputs):
infer_input = InferInput(self._input_names[idx], data.shape,
"UINT8")
infer_input.set_data_from_numpy(data)
infer_inputs.append(infer_input)
results = self._client.infer(
model_name=self._model_name,
model_version=self._model_version,
inputs=infer_inputs,
outputs=self._outputs_req,
client_timeout=self._response_wait_t, )
results = {name: results.as_numpy(name) for name in self._output_names}
return results
def _verify_triton_state(self, triton_client):
if not triton_client.is_server_live():
return f"Triton server {self._server_url} is not live"
elif not triton_client.is_server_ready():
return f"Triton server {self._server_url} is not ready"
elif not triton_client.is_model_ready(self._model_name,
self._model_version):
return f"Model {self._model_name}:{self._model_version} is not ready"
return None
if __name__ == "__main__":
model_name = "ppdet"
model_version = "1"
url = "localhost:8001"
runner = SyncGRPCTritonRunner(url, model_name, model_version)
im = cv2.imread("000000014439.jpg")
im = np.array([im, ])
# batch input
# im = np.array([im, im, im])
for i in range(1):
result = runner.Run([im, ])
for name, values in result.items():
print("output_name:", name)
# values is batch
for value in values:
value = json.loads(value)
print(value['boxes'])