更换文档检测模型
This commit is contained in:
111
paddle_detection/deploy/fastdeploy/serving/README.md
Normal file
111
paddle_detection/deploy/fastdeploy/serving/README.md
Normal file
@@ -0,0 +1,111 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PaddleDetection 服务化部署示例
|
||||
|
||||
本文档以PP-YOLOE模型(ppyoloe_crn_l_300e_coco)为例,进行详细介绍。其他PaddleDetection模型都已支持服务化部署,只需将下述命令中的模型和配置名字修改成要部署模型的名字。
|
||||
|
||||
PaddleDetection模型导出和预训练模型下载请看[PaddleDetection模型部署](../README.md)文档。
|
||||
|
||||
## 1. 部署环境准备
|
||||
在服务化部署前,需确认
|
||||
|
||||
- 1. 服务化镜像的软硬件环境要求和镜像拉取命令请参考[FastDeploy服务化部署](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/README_CN.md)
|
||||
|
||||
|
||||
## 2. 启动服务
|
||||
|
||||
```bash
|
||||
#下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/PaddleDetection.git
|
||||
cd PaddleDetection/deploy/fastdeploy/serving
|
||||
|
||||
#下载PPYOLOE模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
tar xvf ppyoloe_crn_l_300e_coco.tgz
|
||||
|
||||
# 将配置文件放入预处理目录
|
||||
mv ppyoloe_crn_l_300e_coco/infer_cfg.yml models/preprocess/1/
|
||||
|
||||
# 将模型放入 models/runtime/1目录下, 并重命名为model.pdmodel和model.pdiparams
|
||||
mv ppyoloe_crn_l_300e_coco/model.pdmodel models/runtime/1/model.pdmodel
|
||||
mv ppyoloe_crn_l_300e_coco/model.pdiparams models/runtime/1/model.pdiparams
|
||||
|
||||
# 将ppdet和runtime中的ppyoloe配置文件重命名成标准的config名字
|
||||
# 其他模型比如faster_rcc就将faster_rcnn_config.pbtxt重命名为config.pbtxt
|
||||
cp models/ppdet/ppyoloe_config.pbtxt models/ppdet/config.pbtxt
|
||||
cp models/runtime/ppyoloe_runtime_config.pbtxt models/runtime/config.pbtxt
|
||||
|
||||
# 注意: 由于mask_rcnn模型多一个输出,需要将后处理目录(models/postprocess)中的mask_config.pbtxt重命名为config.pbtxt
|
||||
|
||||
# 拉取fastdeploy镜像(x.y.z为镜像版本号,需替换成fastdeploy版本数字)
|
||||
# GPU镜像
|
||||
docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10
|
||||
# CPU镜像
|
||||
docker pull paddlepaddle/fastdeploy:z.y.z-cpu-only-21.10
|
||||
|
||||
# 运行容器.容器名字为 fd_serving, 并挂载当前目录为容器的 /serving 目录
|
||||
nvidia-docker run -it --net=host --name fd_serving --shm-size="1g" -v `pwd`/:/serving registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10 bash
|
||||
|
||||
# 启动服务(不设置CUDA_VISIBLE_DEVICES环境变量,会拥有所有GPU卡的调度权限)
|
||||
CUDA_VISIBLE_DEVICES=0 fastdeployserver --model-repository=/serving/models
|
||||
```
|
||||
>> **注意**:
|
||||
|
||||
>> 由于mask_rcnn模型多一个输出,部署mask_rcnn需要将后处理目录(models/postprocess)中的mask_config.pbtxt重命名为config.pbtxt
|
||||
|
||||
>> 拉取镜像请看[服务化部署主文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/README_CN.md)
|
||||
|
||||
>> 执行fastdeployserver启动服务出现"Address already in use", 请使用`--grpc-port`指定grpc端口号来启动服务,同时更改客户端示例中的请求端口号.
|
||||
|
||||
>> 其他启动参数可以使用 fastdeployserver --help 查看
|
||||
|
||||
服务启动成功后, 会有以下输出:
|
||||
```
|
||||
......
|
||||
I0928 04:51:15.784517 206 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001
|
||||
I0928 04:51:15.785177 206 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000
|
||||
I0928 04:51:15.826578 206 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002
|
||||
```
|
||||
|
||||
|
||||
## 3. 客户端请求
|
||||
|
||||
在物理机器中执行以下命令,发送grpc请求并输出结果
|
||||
```
|
||||
#下载测试图片
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
#安装客户端依赖
|
||||
python3 -m pip install tritonclient[all]
|
||||
|
||||
# 发送请求
|
||||
python3 paddledet_grpc_client.py
|
||||
```
|
||||
|
||||
发送请求成功后,会返回json格式的检测结果并打印输出:
|
||||
```
|
||||
output_name: DET_RESULT
|
||||
[[159.93016052246094, 82.35527038574219, 199.8546600341797, 164.68682861328125],
|
||||
... ...,
|
||||
[60.200584411621094, 123.73260498046875, 108.83859252929688, 169.07467651367188]]
|
||||
```
|
||||
|
||||
## 4. 配置修改
|
||||
|
||||
当前默认配置在GPU上运行Paddle引擎, 如果要在CPU或其他推理引擎上运行。 需要修改`models/runtime/config.pbtxt`中配置,详情请参考[配置文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/model_configuration.md)
|
||||
|
||||
|
||||
## 5. 使用VisualDL进行可视化部署
|
||||
|
||||
可以使用VisualDL进行[Serving可视化部署](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/vdl_management.md),上述启动服务、配置修改以及客户端请求的操作都可以基于VisualDL进行。
|
||||
|
||||
通过VisualDL的可视化界面对PaddleDetection进行服务化部署只需要如下三步:
|
||||
```text
|
||||
1. 载入模型库:./vision/detection/paddledetection/serving/models
|
||||
2. 下载模型资源文件:点击preprocess模型,点击版本号1添加预训练模型,选择检测模型ppyoloe_crn_l_300e_coco进行下载,此时preprocess中将会有资源文件infer_cfg.yml。点击runtime模型,点击版本号1添加预训练模型,选择检测模型ppyoloe_crn_l_300e_coco进行下载,此时runtime中将会有资源文件model.pdmodel和model.pdiparams。
|
||||
3. 设置启动配置文件:点击ensemble配置按钮,选择配置文件ppyoloe_config.pbtxt,并设为启动配置文件。点击runtime模型,选择配置文件ppyoloe_runtime_config.pbtxt,并设为启动配置文件。
|
||||
4. 启动服务:点击启动服务按钮,输入启动参数。
|
||||
```
|
||||
<p align="center">
|
||||
<img src="https://user-images.githubusercontent.com/22424850/211710983-2d1f1427-6738-409d-903b-2b4e4ab6cbfc.gif" width="100%"/>
|
||||
</p>
|
||||
@@ -0,0 +1,110 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
import fastdeploy as fd
|
||||
|
||||
# triton_python_backend_utils is available in every Triton Python model. You
|
||||
# need to use this module to create inference requests and responses. It also
|
||||
# contains some utility functions for extracting information from model_config
|
||||
# and converting Triton input/output types to numpy types.
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Your Python model must use the same class name. Every Python model
|
||||
that is created must have "TritonPythonModel" as the class name.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""`initialize` is called only once when the model is being loaded.
|
||||
Implementing `initialize` function is optional. This function allows
|
||||
the model to intialize any state associated with this model.
|
||||
Parameters
|
||||
----------
|
||||
args : dict
|
||||
Both keys and values are strings. The dictionary keys and values are:
|
||||
* model_config: A JSON string containing the model configuration
|
||||
* model_instance_kind: A string containing model instance kind
|
||||
* model_instance_device_id: A string containing model instance device ID
|
||||
* model_repository: Model repository path
|
||||
* model_version: Model version
|
||||
* model_name: Model name
|
||||
"""
|
||||
# You must parse model_config. JSON string is not parsed here
|
||||
self.model_config = json.loads(args['model_config'])
|
||||
print("model_config:", self.model_config)
|
||||
|
||||
self.input_names = []
|
||||
for input_config in self.model_config["input"]:
|
||||
self.input_names.append(input_config["name"])
|
||||
print("postprocess input names:", self.input_names)
|
||||
|
||||
self.output_names = []
|
||||
self.output_dtype = []
|
||||
for output_config in self.model_config["output"]:
|
||||
self.output_names.append(output_config["name"])
|
||||
dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
|
||||
self.output_dtype.append(dtype)
|
||||
print("postprocess output names:", self.output_names)
|
||||
|
||||
self.postprocess_ = fd.vision.detection.PaddleDetPostprocessor()
|
||||
|
||||
def execute(self, requests):
|
||||
"""`execute` must be implemented in every Python model. `execute`
|
||||
function receives a list of pb_utils.InferenceRequest as the only
|
||||
argument. This function is called when an inference is requested
|
||||
for this model. Depending on the batching configuration (e.g. Dynamic
|
||||
Batching) used, `requests` may contain multiple requests. Every
|
||||
Python model, must create one pb_utils.InferenceResponse for every
|
||||
pb_utils.InferenceRequest in `requests`. If there is an error, you can
|
||||
set the error argument when creating a pb_utils.InferenceResponse.
|
||||
Parameters
|
||||
----------
|
||||
requests : list
|
||||
A list of pb_utils.InferenceRequest
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
A list of pb_utils.InferenceResponse. The length of this list must
|
||||
be the same as `requests`
|
||||
"""
|
||||
responses = []
|
||||
for request in requests:
|
||||
infer_outputs = []
|
||||
for name in self.input_names:
|
||||
infer_output = pb_utils.get_input_tensor_by_name(request, name)
|
||||
if infer_output:
|
||||
infer_output = infer_output.as_numpy()
|
||||
infer_outputs.append(infer_output)
|
||||
|
||||
results = self.postprocess_.run(infer_outputs)
|
||||
r_str = fd.vision.utils.fd_result_to_json(results)
|
||||
|
||||
r_np = np.array(r_str, dtype=np.object_)
|
||||
out_tensor = pb_utils.Tensor(self.output_names[0], r_np)
|
||||
inference_response = pb_utils.InferenceResponse(
|
||||
output_tensors=[out_tensor, ])
|
||||
responses.append(inference_response)
|
||||
return responses
|
||||
|
||||
def finalize(self):
|
||||
"""`finalize` is called only once when the model is being unloaded.
|
||||
Implementing `finalize` function is optional. This function allows
|
||||
the model to perform any necessary clean ups before exit.
|
||||
"""
|
||||
print('Cleaning up...')
|
||||
@@ -0,0 +1,30 @@
|
||||
name: "postprocess"
|
||||
backend: "python"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "post_input1"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 6 ]
|
||||
},
|
||||
{
|
||||
name: "post_input2"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "post_output"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
instance_group [
|
||||
{
|
||||
count: 1
|
||||
kind: KIND_CPU
|
||||
}
|
||||
]
|
||||
@@ -0,0 +1,34 @@
|
||||
backend: "python"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "post_input1"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 6 ]
|
||||
},
|
||||
{
|
||||
name: "post_input2"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ -1 ]
|
||||
},
|
||||
{
|
||||
name: "post_input3"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ -1, -1, -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "post_output"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
instance_group [
|
||||
{
|
||||
count: 1
|
||||
kind: KIND_CPU
|
||||
}
|
||||
]
|
||||
@@ -0,0 +1,3 @@
|
||||
# PaddleDetection Pipeline
|
||||
|
||||
The pipeline directory does not have model files, but a version number directory needs to be maintained.
|
||||
@@ -0,0 +1,80 @@
|
||||
platform: "ensemble"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "INPUT"
|
||||
data_type: TYPE_UINT8
|
||||
dims: [ -1, -1, -1, 3 ]
|
||||
}
|
||||
]
|
||||
output [
|
||||
{
|
||||
name: "DET_RESULT"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
ensemble_scheduling {
|
||||
step [
|
||||
{
|
||||
model_name: "preprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "preprocess_input"
|
||||
value: "INPUT"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output1"
|
||||
value: "RUNTIME_INPUT1"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output2"
|
||||
value: "RUNTIME_INPUT2"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output3"
|
||||
value: "RUNTIME_INPUT3"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "runtime"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "image"
|
||||
value: "RUNTIME_INPUT1"
|
||||
}
|
||||
input_map {
|
||||
key: "scale_factor"
|
||||
value: "RUNTIME_INPUT2"
|
||||
}
|
||||
input_map {
|
||||
key: "im_shape"
|
||||
value: "RUNTIME_INPUT3"
|
||||
}
|
||||
output_map {
|
||||
key: "concat_12.tmp_0"
|
||||
value: "RUNTIME_OUTPUT1"
|
||||
}
|
||||
output_map {
|
||||
key: "concat_8.tmp_0"
|
||||
value: "RUNTIME_OUTPUT2"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "postprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "post_input1"
|
||||
value: "RUNTIME_OUTPUT1"
|
||||
}
|
||||
input_map {
|
||||
key: "post_input2"
|
||||
value: "RUNTIME_OUTPUT2"
|
||||
}
|
||||
output_map {
|
||||
key: "post_output"
|
||||
value: "DET_RESULT"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -0,0 +1,88 @@
|
||||
platform: "ensemble"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "INPUT"
|
||||
data_type: TYPE_UINT8
|
||||
dims: [ -1, -1, -1, 3 ]
|
||||
}
|
||||
]
|
||||
output [
|
||||
{
|
||||
name: "DET_RESULT"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
ensemble_scheduling {
|
||||
step [
|
||||
{
|
||||
model_name: "preprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "preprocess_input"
|
||||
value: "INPUT"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output1"
|
||||
value: "RUNTIME_INPUT1"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output2"
|
||||
value: "RUNTIME_INPUT2"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output3"
|
||||
value: "RUNTIME_INPUT3"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "runtime"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "image"
|
||||
value: "RUNTIME_INPUT1"
|
||||
}
|
||||
input_map {
|
||||
key: "scale_factor"
|
||||
value: "RUNTIME_INPUT2"
|
||||
}
|
||||
input_map {
|
||||
key: "im_shape"
|
||||
value: "RUNTIME_INPUT3"
|
||||
}
|
||||
output_map {
|
||||
key: "concat_9.tmp_0"
|
||||
value: "RUNTIME_OUTPUT1"
|
||||
}
|
||||
output_map {
|
||||
key: "concat_5.tmp_0"
|
||||
value: "RUNTIME_OUTPUT2"
|
||||
},
|
||||
output_map {
|
||||
key: "tmp_109"
|
||||
value: "RUNTIME_OUTPUT3"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "postprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "post_input1"
|
||||
value: "RUNTIME_OUTPUT1"
|
||||
}
|
||||
input_map {
|
||||
key: "post_input2"
|
||||
value: "RUNTIME_OUTPUT2"
|
||||
}
|
||||
input_map {
|
||||
key: "post_input3"
|
||||
value: "RUNTIME_OUTPUT3"
|
||||
}
|
||||
output_map {
|
||||
key: "post_output"
|
||||
value: "DET_RESULT"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -0,0 +1,80 @@
|
||||
platform: "ensemble"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "INPUT"
|
||||
data_type: TYPE_UINT8
|
||||
dims: [ -1, -1, -1, 3 ]
|
||||
}
|
||||
]
|
||||
output [
|
||||
{
|
||||
name: "DET_RESULT"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
ensemble_scheduling {
|
||||
step [
|
||||
{
|
||||
model_name: "preprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "preprocess_input"
|
||||
value: "INPUT"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output1"
|
||||
value: "RUNTIME_INPUT1"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output2"
|
||||
value: "RUNTIME_INPUT2"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output3"
|
||||
value: "RUNTIME_INPUT3"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "runtime"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "image"
|
||||
value: "RUNTIME_INPUT1"
|
||||
}
|
||||
input_map {
|
||||
key: "scale_factor"
|
||||
value: "RUNTIME_INPUT2"
|
||||
}
|
||||
input_map {
|
||||
key: "im_shape"
|
||||
value: "RUNTIME_INPUT3"
|
||||
}
|
||||
output_map {
|
||||
key: "matrix_nms_0.tmp_0"
|
||||
value: "RUNTIME_OUTPUT1"
|
||||
}
|
||||
output_map {
|
||||
key: "matrix_nms_0.tmp_2"
|
||||
value: "RUNTIME_OUTPUT2"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "postprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "post_input1"
|
||||
value: "RUNTIME_OUTPUT1"
|
||||
}
|
||||
input_map {
|
||||
key: "post_input2"
|
||||
value: "RUNTIME_OUTPUT2"
|
||||
}
|
||||
output_map {
|
||||
key: "post_output"
|
||||
value: "DET_RESULT"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -0,0 +1,72 @@
|
||||
platform: "ensemble"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "INPUT"
|
||||
data_type: TYPE_UINT8
|
||||
dims: [ -1, -1, -1, 3 ]
|
||||
}
|
||||
]
|
||||
output [
|
||||
{
|
||||
name: "DET_RESULT"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
ensemble_scheduling {
|
||||
step [
|
||||
{
|
||||
model_name: "preprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "preprocess_input"
|
||||
value: "INPUT"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output1"
|
||||
value: "RUNTIME_INPUT1"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output2"
|
||||
value: "RUNTIME_INPUT2"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "runtime"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "image"
|
||||
value: "RUNTIME_INPUT1"
|
||||
}
|
||||
input_map {
|
||||
key: "scale_factor"
|
||||
value: "RUNTIME_INPUT2"
|
||||
}
|
||||
output_map {
|
||||
key: "multiclass_nms3_0.tmp_0"
|
||||
value: "RUNTIME_OUTPUT1"
|
||||
}
|
||||
output_map {
|
||||
key: "multiclass_nms3_0.tmp_2"
|
||||
value: "RUNTIME_OUTPUT2"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "postprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "post_input1"
|
||||
value: "RUNTIME_OUTPUT1"
|
||||
}
|
||||
input_map {
|
||||
key: "post_input2"
|
||||
value: "RUNTIME_OUTPUT2"
|
||||
}
|
||||
output_map {
|
||||
key: "post_output"
|
||||
value: "DET_RESULT"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -0,0 +1,114 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
import fastdeploy as fd
|
||||
|
||||
# triton_python_backend_utils is available in every Triton Python model. You
|
||||
# need to use this module to create inference requests and responses. It also
|
||||
# contains some utility functions for extracting information from model_config
|
||||
# and converting Triton input/output types to numpy types.
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Your Python model must use the same class name. Every Python model
|
||||
that is created must have "TritonPythonModel" as the class name.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""`initialize` is called only once when the model is being loaded.
|
||||
Implementing `initialize` function is optional. This function allows
|
||||
the model to intialize any state associated with this model.
|
||||
Parameters
|
||||
----------
|
||||
args : dict
|
||||
Both keys and values are strings. The dictionary keys and values are:
|
||||
* model_config: A JSON string containing the model configuration
|
||||
* model_instance_kind: A string containing model instance kind
|
||||
* model_instance_device_id: A string containing model instance device ID
|
||||
* model_repository: Model repository path
|
||||
* model_version: Model version
|
||||
* model_name: Model name
|
||||
"""
|
||||
# You must parse model_config. JSON string is not parsed here
|
||||
self.model_config = json.loads(args['model_config'])
|
||||
print("model_config:", self.model_config)
|
||||
|
||||
self.input_names = []
|
||||
for input_config in self.model_config["input"]:
|
||||
self.input_names.append(input_config["name"])
|
||||
print("preprocess input names:", self.input_names)
|
||||
|
||||
self.output_names = []
|
||||
self.output_dtype = []
|
||||
for output_config in self.model_config["output"]:
|
||||
self.output_names.append(output_config["name"])
|
||||
# dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
|
||||
# self.output_dtype.append(dtype)
|
||||
self.output_dtype.append(output_config["data_type"])
|
||||
print("preprocess output names:", self.output_names)
|
||||
|
||||
# init PaddleClasPreprocess class
|
||||
yaml_path = os.path.abspath(os.path.dirname(
|
||||
__file__)) + "/infer_cfg.yml"
|
||||
self.preprocess_ = fd.vision.detection.PaddleDetPreprocessor(yaml_path)
|
||||
|
||||
def execute(self, requests):
|
||||
"""`execute` must be implemented in every Python model. `execute`
|
||||
function receives a list of pb_utils.InferenceRequest as the only
|
||||
argument. This function is called when an inference is requested
|
||||
for this model. Depending on the batching configuration (e.g. Dynamic
|
||||
Batching) used, `requests` may contain multiple requests. Every
|
||||
Python model, must create one pb_utils.InferenceResponse for every
|
||||
pb_utils.InferenceRequest in `requests`. If there is an error, you can
|
||||
set the error argument when creating a pb_utils.InferenceResponse.
|
||||
Parameters
|
||||
----------
|
||||
requests : list
|
||||
A list of pb_utils.InferenceRequest
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
A list of pb_utils.InferenceResponse. The length of this list must
|
||||
be the same as `requests`
|
||||
"""
|
||||
responses = []
|
||||
for request in requests:
|
||||
data = pb_utils.get_input_tensor_by_name(request,
|
||||
self.input_names[0])
|
||||
data = data.as_numpy()
|
||||
outputs = self.preprocess_.run(data)
|
||||
|
||||
output_tensors = []
|
||||
for idx, name in enumerate(self.output_names):
|
||||
dlpack_tensor = outputs[idx].to_dlpack()
|
||||
output_tensor = pb_utils.Tensor.from_dlpack(name,
|
||||
dlpack_tensor)
|
||||
output_tensors.append(output_tensor)
|
||||
|
||||
inference_response = pb_utils.InferenceResponse(
|
||||
output_tensors=output_tensors)
|
||||
responses.append(inference_response)
|
||||
return responses
|
||||
|
||||
def finalize(self):
|
||||
"""`finalize` is called only once when the model is being unloaded.
|
||||
Implementing `finalize` function is optional. This function allows
|
||||
the model to perform any necessary clean ups before exit.
|
||||
"""
|
||||
print('Cleaning up...')
|
||||
@@ -0,0 +1,35 @@
|
||||
name: "preprocess"
|
||||
backend: "python"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "preprocess_input"
|
||||
data_type: TYPE_UINT8
|
||||
dims: [ -1, -1, -1, 3 ]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "preprocess_output1"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 3, -1, -1 ]
|
||||
},
|
||||
{
|
||||
name: "preprocess_output2"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 2 ]
|
||||
},
|
||||
{
|
||||
name: "preprocess_output3"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 2 ]
|
||||
}
|
||||
]
|
||||
|
||||
instance_group [
|
||||
{
|
||||
count: 1
|
||||
kind: KIND_CPU
|
||||
}
|
||||
]
|
||||
@@ -0,0 +1,5 @@
|
||||
# Runtime Directory
|
||||
|
||||
This directory holds the model files.
|
||||
Paddle models must be model.pdmodel and model.pdiparams files.
|
||||
ONNX models must be model.onnx files.
|
||||
@@ -0,0 +1,58 @@
|
||||
backend: "fastdeploy"
|
||||
|
||||
# Input configuration of the model
|
||||
input [
|
||||
{
|
||||
# input name
|
||||
name: "image"
|
||||
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
|
||||
data_type: TYPE_FP32
|
||||
# input shape, The batch dimension is omitted and the actual shape is [batch, c, h, w]
|
||||
dims: [ -1, 3, -1, -1 ]
|
||||
},
|
||||
{
|
||||
name: "scale_factor"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 2 ]
|
||||
},
|
||||
{
|
||||
name: "im_shape"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 2 ]
|
||||
}
|
||||
]
|
||||
|
||||
# The output of the model is configured in the same format as the input
|
||||
output [
|
||||
{
|
||||
name: "concat_12.tmp_0"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 6 ]
|
||||
},
|
||||
{
|
||||
name: "concat_8.tmp_0"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
# Number of instances of the model
|
||||
instance_group [
|
||||
{
|
||||
# The number of instances is 1
|
||||
count: 1
|
||||
# Use GPU, CPU inference option is:KIND_CPU
|
||||
kind: KIND_GPU
|
||||
# The instance is deployed on the 0th GPU card
|
||||
gpus: [0]
|
||||
}
|
||||
]
|
||||
|
||||
optimization {
|
||||
execution_accelerators {
|
||||
gpu_execution_accelerator : [ {
|
||||
# use Paddle engine
|
||||
name: "paddle",
|
||||
}
|
||||
]
|
||||
}}
|
||||
@@ -0,0 +1,63 @@
|
||||
backend: "fastdeploy"
|
||||
|
||||
# Input configuration of the model
|
||||
input [
|
||||
{
|
||||
# input name
|
||||
name: "image"
|
||||
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
|
||||
data_type: TYPE_FP32
|
||||
# input shape, The batch dimension is omitted and the actual shape is [batch, c, h, w]
|
||||
dims: [ -1, 3, -1, -1 ]
|
||||
},
|
||||
{
|
||||
name: "scale_factor"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 2 ]
|
||||
},
|
||||
{
|
||||
name: "im_shape"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 2 ]
|
||||
}
|
||||
]
|
||||
|
||||
# The output of the model is configured in the same format as the input
|
||||
output [
|
||||
{
|
||||
name: "concat_9.tmp_0"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 6 ]
|
||||
},
|
||||
{
|
||||
name: "concat_5.tmp_0"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ -1 ]
|
||||
},
|
||||
{
|
||||
name: "tmp_109"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ -1, -1, -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
# Number of instances of the model
|
||||
instance_group [
|
||||
{
|
||||
# The number of instances is 1
|
||||
count: 1
|
||||
# Use GPU, CPU inference option is:KIND_CPU
|
||||
kind: KIND_GPU
|
||||
# The instance is deployed on the 0th GPU card
|
||||
gpus: [0]
|
||||
}
|
||||
]
|
||||
|
||||
optimization {
|
||||
execution_accelerators {
|
||||
gpu_execution_accelerator : [ {
|
||||
# use Paddle engine
|
||||
name: "paddle",
|
||||
}
|
||||
]
|
||||
}}
|
||||
@@ -0,0 +1,58 @@
|
||||
backend: "fastdeploy"
|
||||
|
||||
# Input configuration of the model
|
||||
input [
|
||||
{
|
||||
# input name
|
||||
name: "image"
|
||||
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
|
||||
data_type: TYPE_FP32
|
||||
# input shape, The batch dimension is omitted and the actual shape is [batch, c, h, w]
|
||||
dims: [ -1, 3, -1, -1 ]
|
||||
},
|
||||
{
|
||||
name: "scale_factor"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 2 ]
|
||||
},
|
||||
{
|
||||
name: "im_shape"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 2 ]
|
||||
}
|
||||
]
|
||||
|
||||
# The output of the model is configured in the same format as the input
|
||||
output [
|
||||
{
|
||||
name: "matrix_nms_0.tmp_0"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 6 ]
|
||||
},
|
||||
{
|
||||
name: "matrix_nms_0.tmp_2"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
# Number of instances of the model
|
||||
instance_group [
|
||||
{
|
||||
# The number of instances is 1
|
||||
count: 1
|
||||
# Use GPU, CPU inference option is:KIND_CPU
|
||||
kind: KIND_GPU
|
||||
# The instance is deployed on the 0th GPU card
|
||||
gpus: [0]
|
||||
}
|
||||
]
|
||||
|
||||
optimization {
|
||||
execution_accelerators {
|
||||
gpu_execution_accelerator : [ {
|
||||
# use Paddle engine
|
||||
name: "paddle",
|
||||
}
|
||||
]
|
||||
}}
|
||||
@@ -0,0 +1,55 @@
|
||||
# optional, If name is specified it must match the name of the model repository directory containing the model.
|
||||
name: "runtime"
|
||||
backend: "fastdeploy"
|
||||
|
||||
# Input configuration of the model
|
||||
input [
|
||||
{
|
||||
# input name
|
||||
name: "image"
|
||||
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
|
||||
data_type: TYPE_FP32
|
||||
# input shape, The batch dimension is omitted and the actual shape is [batch, c, h, w]
|
||||
dims: [ -1, 3, -1, -1 ]
|
||||
},
|
||||
{
|
||||
name: "scale_factor"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 2 ]
|
||||
}
|
||||
]
|
||||
|
||||
# The output of the model is configured in the same format as the input
|
||||
output [
|
||||
{
|
||||
name: "multiclass_nms3_0.tmp_0"
|
||||
data_type: TYPE_FP32
|
||||
dims: [ -1, 6 ]
|
||||
},
|
||||
{
|
||||
name: "multiclass_nms3_0.tmp_2"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
# Number of instances of the model
|
||||
instance_group [
|
||||
{
|
||||
# The number of instances is 1
|
||||
count: 1
|
||||
# Use GPU, CPU inference option is:KIND_CPU
|
||||
kind: KIND_GPU
|
||||
# The instance is deployed on the 0th GPU card
|
||||
gpus: [0]
|
||||
}
|
||||
]
|
||||
|
||||
optimization {
|
||||
execution_accelerators {
|
||||
gpu_execution_accelerator : [ {
|
||||
# use Paddle engine
|
||||
name: "paddle",
|
||||
}
|
||||
]
|
||||
}}
|
||||
@@ -0,0 +1,109 @@
|
||||
import logging
|
||||
import numpy as np
|
||||
import time
|
||||
from typing import Optional
|
||||
import cv2
|
||||
import json
|
||||
|
||||
from tritonclient import utils as client_utils
|
||||
from tritonclient.grpc import InferenceServerClient, InferInput, InferRequestedOutput, service_pb2_grpc, service_pb2
|
||||
|
||||
LOGGER = logging.getLogger("run_inference_on_triton")
|
||||
|
||||
|
||||
class SyncGRPCTritonRunner:
|
||||
DEFAULT_MAX_RESP_WAIT_S = 120
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
server_url: str,
|
||||
model_name: str,
|
||||
model_version: str,
|
||||
*,
|
||||
verbose=False,
|
||||
resp_wait_s: Optional[float]=None, ):
|
||||
self._server_url = server_url
|
||||
self._model_name = model_name
|
||||
self._model_version = model_version
|
||||
self._verbose = verbose
|
||||
self._response_wait_t = self.DEFAULT_MAX_RESP_WAIT_S if resp_wait_s is None else resp_wait_s
|
||||
|
||||
self._client = InferenceServerClient(
|
||||
self._server_url, verbose=self._verbose)
|
||||
error = self._verify_triton_state(self._client)
|
||||
if error:
|
||||
raise RuntimeError(
|
||||
f"Could not communicate to Triton Server: {error}")
|
||||
|
||||
LOGGER.debug(
|
||||
f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} "
|
||||
f"are up and ready!")
|
||||
|
||||
model_config = self._client.get_model_config(self._model_name,
|
||||
self._model_version)
|
||||
model_metadata = self._client.get_model_metadata(self._model_name,
|
||||
self._model_version)
|
||||
LOGGER.info(f"Model config {model_config}")
|
||||
LOGGER.info(f"Model metadata {model_metadata}")
|
||||
|
||||
for tm in model_metadata.inputs:
|
||||
print("tm:", tm)
|
||||
self._inputs = {tm.name: tm for tm in model_metadata.inputs}
|
||||
self._input_names = list(self._inputs)
|
||||
self._outputs = {tm.name: tm for tm in model_metadata.outputs}
|
||||
self._output_names = list(self._outputs)
|
||||
self._outputs_req = [
|
||||
InferRequestedOutput(name) for name in self._outputs
|
||||
]
|
||||
|
||||
def Run(self, inputs):
|
||||
"""
|
||||
Args:
|
||||
inputs: list, Each value corresponds to an input name of self._input_names
|
||||
Returns:
|
||||
results: dict, {name : numpy.array}
|
||||
"""
|
||||
infer_inputs = []
|
||||
for idx, data in enumerate(inputs):
|
||||
infer_input = InferInput(self._input_names[idx], data.shape,
|
||||
"UINT8")
|
||||
infer_input.set_data_from_numpy(data)
|
||||
infer_inputs.append(infer_input)
|
||||
|
||||
results = self._client.infer(
|
||||
model_name=self._model_name,
|
||||
model_version=self._model_version,
|
||||
inputs=infer_inputs,
|
||||
outputs=self._outputs_req,
|
||||
client_timeout=self._response_wait_t, )
|
||||
results = {name: results.as_numpy(name) for name in self._output_names}
|
||||
return results
|
||||
|
||||
def _verify_triton_state(self, triton_client):
|
||||
if not triton_client.is_server_live():
|
||||
return f"Triton server {self._server_url} is not live"
|
||||
elif not triton_client.is_server_ready():
|
||||
return f"Triton server {self._server_url} is not ready"
|
||||
elif not triton_client.is_model_ready(self._model_name,
|
||||
self._model_version):
|
||||
return f"Model {self._model_name}:{self._model_version} is not ready"
|
||||
return None
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
model_name = "ppdet"
|
||||
model_version = "1"
|
||||
url = "localhost:8001"
|
||||
runner = SyncGRPCTritonRunner(url, model_name, model_version)
|
||||
im = cv2.imread("000000014439.jpg")
|
||||
im = np.array([im, ])
|
||||
# batch input
|
||||
# im = np.array([im, im, im])
|
||||
for i in range(1):
|
||||
result = runner.Run([im, ])
|
||||
for name, values in result.items():
|
||||
print("output_name:", name)
|
||||
# values is batch
|
||||
for value in values:
|
||||
value = json.loads(value)
|
||||
print(value['boxes'])
|
||||
Reference in New Issue
Block a user