更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,5 @@
# Runtime Directory
This directory holds the model files.
Paddle models must be model.pdmodel and model.pdiparams files.
ONNX models must be model.onnx files.

View File

@@ -0,0 +1,58 @@
backend: "fastdeploy"
# Input configuration of the model
input [
{
# input name
name: "image"
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
data_type: TYPE_FP32
# input shape The batch dimension is omitted and the actual shape is [batch, c, h, w]
dims: [ -1, 3, -1, -1 ]
},
{
name: "scale_factor"
data_type: TYPE_FP32
dims: [ -1, 2 ]
},
{
name: "im_shape"
data_type: TYPE_FP32
dims: [ -1, 2 ]
}
]
# The output of the model is configured in the same format as the input
output [
{
name: "concat_12.tmp_0"
data_type: TYPE_FP32
dims: [ -1, 6 ]
},
{
name: "concat_8.tmp_0"
data_type: TYPE_INT32
dims: [ -1 ]
}
]
# Number of instances of the model
instance_group [
{
# The number of instances is 1
count: 1
# Use GPU, CPU inference option is:KIND_CPU
kind: KIND_GPU
# The instance is deployed on the 0th GPU card
gpus: [0]
}
]
optimization {
execution_accelerators {
gpu_execution_accelerator : [ {
# use Paddle engine
name: "paddle",
}
]
}}

View File

@@ -0,0 +1,63 @@
backend: "fastdeploy"
# Input configuration of the model
input [
{
# input name
name: "image"
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
data_type: TYPE_FP32
# input shape The batch dimension is omitted and the actual shape is [batch, c, h, w]
dims: [ -1, 3, -1, -1 ]
},
{
name: "scale_factor"
data_type: TYPE_FP32
dims: [ -1, 2 ]
},
{
name: "im_shape"
data_type: TYPE_FP32
dims: [ -1, 2 ]
}
]
# The output of the model is configured in the same format as the input
output [
{
name: "concat_9.tmp_0"
data_type: TYPE_FP32
dims: [ -1, 6 ]
},
{
name: "concat_5.tmp_0"
data_type: TYPE_INT32
dims: [ -1 ]
},
{
name: "tmp_109"
data_type: TYPE_INT32
dims: [ -1, -1, -1 ]
}
]
# Number of instances of the model
instance_group [
{
# The number of instances is 1
count: 1
# Use GPU, CPU inference option is:KIND_CPU
kind: KIND_GPU
# The instance is deployed on the 0th GPU card
gpus: [0]
}
]
optimization {
execution_accelerators {
gpu_execution_accelerator : [ {
# use Paddle engine
name: "paddle",
}
]
}}

View File

@@ -0,0 +1,58 @@
backend: "fastdeploy"
# Input configuration of the model
input [
{
# input name
name: "image"
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
data_type: TYPE_FP32
# input shape The batch dimension is omitted and the actual shape is [batch, c, h, w]
dims: [ -1, 3, -1, -1 ]
},
{
name: "scale_factor"
data_type: TYPE_FP32
dims: [ -1, 2 ]
},
{
name: "im_shape"
data_type: TYPE_FP32
dims: [ -1, 2 ]
}
]
# The output of the model is configured in the same format as the input
output [
{
name: "matrix_nms_0.tmp_0"
data_type: TYPE_FP32
dims: [ -1, 6 ]
},
{
name: "matrix_nms_0.tmp_2"
data_type: TYPE_INT32
dims: [ -1 ]
}
]
# Number of instances of the model
instance_group [
{
# The number of instances is 1
count: 1
# Use GPU, CPU inference option is:KIND_CPU
kind: KIND_GPU
# The instance is deployed on the 0th GPU card
gpus: [0]
}
]
optimization {
execution_accelerators {
gpu_execution_accelerator : [ {
# use Paddle engine
name: "paddle",
}
]
}}

View File

@@ -0,0 +1,55 @@
# optional, If name is specified it must match the name of the model repository directory containing the model.
name: "runtime"
backend: "fastdeploy"
# Input configuration of the model
input [
{
# input name
name: "image"
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
data_type: TYPE_FP32
# input shape The batch dimension is omitted and the actual shape is [batch, c, h, w]
dims: [ -1, 3, -1, -1 ]
},
{
name: "scale_factor"
data_type: TYPE_FP32
dims: [ -1, 2 ]
}
]
# The output of the model is configured in the same format as the input
output [
{
name: "multiclass_nms3_0.tmp_0"
data_type: TYPE_FP32
dims: [ -1, 6 ]
},
{
name: "multiclass_nms3_0.tmp_2"
data_type: TYPE_INT32
dims: [ -1 ]
}
]
# Number of instances of the model
instance_group [
{
# The number of instances is 1
count: 1
# Use GPU, CPU inference option is:KIND_CPU
kind: KIND_GPU
# The instance is deployed on the 0th GPU card
gpus: [0]
}
]
optimization {
execution_accelerators {
gpu_execution_accelerator : [ {
# use Paddle engine
name: "paddle",
}
]
}}