更换文档检测模型
This commit is contained in:
108
paddle_detection/deploy/fastdeploy/sophgo/README.md
Normal file
108
paddle_detection/deploy/fastdeploy/sophgo/README.md
Normal file
@@ -0,0 +1,108 @@
|
||||
# PaddleDetection SOPHGO部署示例
|
||||
|
||||
## 1. 支持模型列表
|
||||
|
||||
目前SOPHGO支持如下模型的部署
|
||||
- [PP-YOLOE系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/ppyoloe)
|
||||
- [PicoDet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet)
|
||||
- [YOLOV8系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)
|
||||
|
||||
## 2. 准备PP-YOLOE YOLOV8或者PicoDet部署模型以及转换模型
|
||||
|
||||
SOPHGO-TPU部署模型前需要将Paddle模型转换成bmodel模型,具体步骤如下:
|
||||
- Paddle动态图模型转换为ONNX模型,请参考[PaddleDetection导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/EXPORT_MODEL.md).
|
||||
- ONNX模型转换bmodel模型的过程,请参考[TPU-MLIR](https://github.com/sophgo/tpu-mlir)
|
||||
|
||||
## 3. 模型转换example
|
||||
|
||||
PP-YOLOE YOLOV8和PicoDet模型转换过程类似,下面以ppyoloe_crn_s_300e_coco为例子,教大家如何转换Paddle模型到SOPHGO-TPU模型
|
||||
|
||||
### 导出ONNX模型
|
||||
```shell
|
||||
#导出paddle模型
|
||||
python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_s_300e_coco.yml --output_dir=output_inference -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams
|
||||
|
||||
#paddle模型转ONNX模型
|
||||
paddle2onnx --model_dir ppyoloe_crn_s_300e_coco \
|
||||
--model_filename model.pdmodel \
|
||||
--params_filename model.pdiparams \
|
||||
--save_file ppyoloe_crn_s_300e_coco.onnx \
|
||||
--enable_dev_version True
|
||||
|
||||
#进入Paddle2ONNX文件夹,固定ONNX模型shape
|
||||
python -m paddle2onnx.optimize --input_model ppyoloe_crn_s_300e_coco.onnx \
|
||||
--output_model ppyoloe_crn_s_300e_coco.onnx \
|
||||
--input_shape_dict "{'image':[1,3,640,640]}"
|
||||
|
||||
```
|
||||
### 导出bmodel模型
|
||||
|
||||
以转化BM1684x的bmodel模型为例子,我们需要下载[TPU-MLIR](https://github.com/sophgo/tpu-mlir)工程,安装过程具体参见[TPU-MLIR文档](https://github.com/sophgo/tpu-mlir/blob/master/README.md)。
|
||||
## 4. 安装
|
||||
``` shell
|
||||
docker pull sophgo/tpuc_dev:latest
|
||||
|
||||
# myname1234是一个示例,也可以设置其他名字
|
||||
docker run --privileged --name myname1234 -v $PWD:/workspace -it sophgo/tpuc_dev:latest
|
||||
|
||||
source ./envsetup.sh
|
||||
./build.sh
|
||||
```
|
||||
|
||||
## 5. ONNX模型转换为bmodel模型
|
||||
``` shell
|
||||
mkdir ppyoloe_crn_s_300e_coco && cd ppyoloe_crn_s_300e_coco
|
||||
|
||||
# 下载测试图片,并将图片转换为npz格式
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
#使用python获得模型转换所需要的npz文件
|
||||
im = cv2.imread(im)
|
||||
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
||||
#[640 640]为ppyoloe_crn_s_300e_coco的输入大小
|
||||
im_scale_y = 640 / float(im.shape[0])
|
||||
im_scale_x = 640 / float(im.shape[1])
|
||||
inputs = {}
|
||||
inputs['image'] = np.array((im, )).astype('float32')
|
||||
inputs['scale_factor'] = np.array([im_scale_y, im_scale_x]).astype('float32')
|
||||
np.savez('inputs.npz', image = inputs['image'], scale_factor = inputs['scale_factor'])
|
||||
|
||||
#放入onnx模型文件ppyoloe_crn_s_300e_coco.onnx
|
||||
|
||||
mkdir workspace && cd workspace
|
||||
|
||||
# 将ONNX模型转换为mlir模型
|
||||
model_transform.py \
|
||||
--model_name ppyoloe_crn_s_300e_coco \
|
||||
--model_def ../ppyoloe_crn_s_300e_coco.onnx \
|
||||
--input_shapes [[1,3,640,640],[1,2]] \
|
||||
--keep_aspect_ratio \
|
||||
--pixel_format rgb \
|
||||
--output_names p2o.Div.1,p2o.Concat.29 \
|
||||
--test_input ../inputs.npz \
|
||||
--test_result ppyoloe_crn_s_300e_coco_top_outputs.npz \
|
||||
--mlir ppyoloe_crn_s_300e_coco.mlir
|
||||
```
|
||||
## 6. 注意
|
||||
**由于TPU-MLIR当前不支持后处理算法,所以需要查看后处理的输入作为网络的输出**
|
||||
具体方法为:output_names需要通过[NETRO](https://netron.app/) 查看,网页中打开需要转换的ONNX模型,搜索NonMaxSuppression节点
|
||||
查看INPUTS中boxes和scores的名字,这个两个名字就是我们所需的output_names
|
||||
例如使用Netron可视化后,可以得到如下图片
|
||||

|
||||
找到蓝色方框标记的NonMaxSuppression节点,可以看到红色方框标记的两个节点名称为p2o.Div.1,p2o.Concat.29
|
||||
|
||||
``` bash
|
||||
# 将mlir模型转换为BM1684x的F32 bmodel模型
|
||||
model_deploy.py \
|
||||
--mlir ppyoloe_crn_s_300e_coco.mlir \
|
||||
--quantize F32 \
|
||||
--chip bm1684x \
|
||||
--test_input ppyoloe_crn_s_300e_coco_in_f32.npz \
|
||||
--test_reference ppyoloe_crn_s_300e_coco_top_outputs.npz \
|
||||
--model ppyoloe_crn_s_300e_coco_1684x_f32.bmodel
|
||||
```
|
||||
最终获得可以在BM1684x上能够运行的bmodel模型ppyoloe_crn_s_300e_coco_1684x_f32.bmodel。如果需要进一步对模型进行加速,可以将ONNX模型转换为INT8 bmodel,具体步骤参见[TPU-MLIR文档](https://github.com/sophgo/tpu-mlir/blob/master/README.md)。
|
||||
|
||||
## 7. 详细的部署示例
|
||||
- [Cpp部署](./cpp)
|
||||
- [python部署](./python)
|
||||
14
paddle_detection/deploy/fastdeploy/sophgo/cpp/CMakeLists.txt
Normal file
14
paddle_detection/deploy/fastdeploy/sophgo/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,14 @@
|
||||
PROJECT(infer_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
set(ENABLE_LITE_BACKEND OFF)
|
||||
#set(FDLIB ${FASTDEPLOY_INSTALL_DIR})
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
include_directories(${FastDeploy_INCLUDE_DIRS})
|
||||
|
||||
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
|
||||
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
|
||||
57
paddle_detection/deploy/fastdeploy/sophgo/cpp/README.md
Normal file
57
paddle_detection/deploy/fastdeploy/sophgo/cpp/README.md
Normal file
@@ -0,0 +1,57 @@
|
||||
# PaddleDetection 算能 C++部署示例
|
||||
|
||||
本目录下提供`infer.cc`,`快速完成 PP-YOLOE ,在SOPHGO BM1684x板子上加速部署的示例。PP-YOLOV8和 PicoDet的部署逻辑类似,只需要切换模型即可。
|
||||
|
||||
## 1. 部署环境准备
|
||||
在部署前,需自行编译基于算能硬件的预测库,参考文档[算能硬件部署环境](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#算能硬件部署环境)
|
||||
|
||||
## 2. 部署模型准备
|
||||
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleDetection部署模型](../README.md)。
|
||||
|
||||
## 3. 生成基本目录文件
|
||||
|
||||
该例程由以下几个部分组成
|
||||
```text
|
||||
.
|
||||
├── CMakeLists.txt
|
||||
├── fastdeploy-sophgo # 编译文件夹
|
||||
├── image # 存放图片的文件夹
|
||||
├── infer.cc
|
||||
└── model # 存放模型文件的文件夹
|
||||
```
|
||||
|
||||
## 4. 运行部署示例
|
||||
|
||||
### 4.1 编译并拷贝SDK到thirdpartys文件夹
|
||||
|
||||
请参考[SOPHGO部署库编译](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/sophgo.md)仓库编译SDK,编译完成后,将在build目录下生成fastdeploy-sophgo目录.
|
||||
|
||||
### 4.2 拷贝模型文件,以及配置文件至model文件夹
|
||||
将Paddle模型转换为SOPHGO bmodel模型,转换步骤参考[文档](../README.md)
|
||||
将转换后的SOPHGO bmodel模型文件拷贝至model中
|
||||
|
||||
### 4.3 准备测试图片至image文件夹
|
||||
```bash
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
cp 000000014439.jpg ./images
|
||||
```
|
||||
|
||||
### 4.4 编译example
|
||||
|
||||
```bash
|
||||
cd build
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-sophgo
|
||||
make
|
||||
```
|
||||
|
||||
## 4.5 运行例程
|
||||
|
||||
```bash
|
||||
#ppyoloe推理示例
|
||||
./infer_demo model images/000000014439.jpg
|
||||
```
|
||||
|
||||
## 5. 更多指南
|
||||
- [FastDeploy部署PaddleDetection模型概览](../../)
|
||||
- [Python部署](../python)
|
||||
- [模型转换](../README.md)
|
||||
60
paddle_detection/deploy/fastdeploy/sophgo/cpp/infer.cc
Normal file
60
paddle_detection/deploy/fastdeploy/sophgo/cpp/infer.cc
Normal file
@@ -0,0 +1,60 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include <sys/time.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
void SophgoInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + "/ppyoloe_crn_s_300e_coco_1684x_f32.bmodel";
|
||||
auto params_file = "";
|
||||
auto config_file = model_dir + "/infer_cfg.yml";
|
||||
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseSophgo();
|
||||
|
||||
auto format = fastdeploy::ModelFormat::SOPHGO;
|
||||
|
||||
auto model = fastdeploy::vision::detection::PPYOLOE(
|
||||
model_file, params_file, config_file, option, format);
|
||||
|
||||
model.GetPostprocessor().ApplyNMS();
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("infer_sophgo.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./infer_sophgo.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 3) {
|
||||
std::cout
|
||||
<< "Usage: infer_demo path/to/model_dir path/to/image, "
|
||||
"e.g ./infer_demo ./model_dir ./test.jpeg"
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
SophgoInfer(argv[1], argv[2]);
|
||||
return 0;
|
||||
}
|
||||
30
paddle_detection/deploy/fastdeploy/sophgo/python/README.md
Normal file
30
paddle_detection/deploy/fastdeploy/sophgo/python/README.md
Normal file
@@ -0,0 +1,30 @@
|
||||
# PaddleDetection Python部署示例
|
||||
|
||||
## 1. 部署环境准备
|
||||
|
||||
在部署前,需自行编译基于算能硬件的FastDeploy python wheel包并安装,参考文档[算能硬件部署环境](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#算能硬件部署环境)
|
||||
|
||||
本目录下提供`infer.py`, 快速完成 PP-YOLOE ,在SOPHGO TPU上部署的示例,执行如下脚本即可完成。PP-YOLOV8和 PicoDet的部署逻辑类似,只需要切换模型即可。
|
||||
|
||||
## 2. 部署模型准备
|
||||
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleDetection部署模型](../README.md)。
|
||||
|
||||
```bash
|
||||
# 下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/PaddleDetection.git
|
||||
cd PaddleDetection/deploy/fastdeploy/sophgo/python
|
||||
|
||||
# 下载图片
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
# 推理
|
||||
#ppyoloe推理示例
|
||||
python3 infer.py --model_file model/ppyoloe_crn_s_300e_coco_1684x_f32.bmodel --config_file model/infer_cfg.yml --image_file ./000000014439.jpg
|
||||
|
||||
# 运行完成后返回结果如下所示
|
||||
可视化结果存储在sophgo_result.jpg中
|
||||
```
|
||||
|
||||
## 3. 更多指南
|
||||
- [C++部署](../cpp)
|
||||
- [转换PP-YOLOE SOPHGO模型文档](../README.md)
|
||||
59
paddle_detection/deploy/fastdeploy/sophgo/python/infer.py
Normal file
59
paddle_detection/deploy/fastdeploy/sophgo/python/infer.py
Normal file
@@ -0,0 +1,59 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_file", required=True, help="Path of sophgo model.")
|
||||
parser.add_argument("--config_file", required=True, help="Path of config.")
|
||||
parser.add_argument(
|
||||
"--image_file", type=str, required=True, help="Path of test image file.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_arguments()
|
||||
|
||||
model_file = args.model_file
|
||||
params_file = ""
|
||||
config_file = args.config_file
|
||||
|
||||
# setup runtime
|
||||
runtime_option = fd.RuntimeOption()
|
||||
runtime_option.use_sophgo()
|
||||
|
||||
model = fd.vision.detection.PPYOLOE(
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=runtime_option,
|
||||
model_format=fd.ModelFormat.SOPHGO)
|
||||
|
||||
model.postprocessor.apply_nms()
|
||||
|
||||
# predict
|
||||
im = cv2.imread(args.image_file)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# visualize
|
||||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||||
cv2.imwrite("sophgo_result.jpg", vis_im)
|
||||
print("Visualized result save in ./sophgo_result.jpg")
|
||||
Reference in New Issue
Block a user