更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,108 @@
# PaddleDetection SOPHGO部署示例
## 1. 支持模型列表
目前SOPHGO支持如下模型的部署
- [PP-YOLOE系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/ppyoloe)
- [PicoDet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet)
- [YOLOV8系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)
## 2. 准备PP-YOLOE YOLOV8或者PicoDet部署模型以及转换模型
SOPHGO-TPU部署模型前需要将Paddle模型转换成bmodel模型具体步骤如下:
- Paddle动态图模型转换为ONNX模型请参考[PaddleDetection导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/EXPORT_MODEL.md).
- ONNX模型转换bmodel模型的过程请参考[TPU-MLIR](https://github.com/sophgo/tpu-mlir)
## 3. 模型转换example
PP-YOLOE YOLOV8和PicoDet模型转换过程类似下面以ppyoloe_crn_s_300e_coco为例子,教大家如何转换Paddle模型到SOPHGO-TPU模型
### 导出ONNX模型
```shell
#导出paddle模型
python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_s_300e_coco.yml --output_dir=output_inference -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams
#paddle模型转ONNX模型
paddle2onnx --model_dir ppyoloe_crn_s_300e_coco \
--model_filename model.pdmodel \
--params_filename model.pdiparams \
--save_file ppyoloe_crn_s_300e_coco.onnx \
--enable_dev_version True
#进入Paddle2ONNX文件夹固定ONNX模型shape
python -m paddle2onnx.optimize --input_model ppyoloe_crn_s_300e_coco.onnx \
--output_model ppyoloe_crn_s_300e_coco.onnx \
--input_shape_dict "{'image':[1,3,640,640]}"
```
### 导出bmodel模型
以转化BM1684x的bmodel模型为例子我们需要下载[TPU-MLIR](https://github.com/sophgo/tpu-mlir)工程,安装过程具体参见[TPU-MLIR文档](https://github.com/sophgo/tpu-mlir/blob/master/README.md)。
## 4. 安装
``` shell
docker pull sophgo/tpuc_dev:latest
# myname1234是一个示例也可以设置其他名字
docker run --privileged --name myname1234 -v $PWD:/workspace -it sophgo/tpuc_dev:latest
source ./envsetup.sh
./build.sh
```
## 5. ONNX模型转换为bmodel模型
``` shell
mkdir ppyoloe_crn_s_300e_coco && cd ppyoloe_crn_s_300e_coco
# 下载测试图片并将图片转换为npz格式
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
#使用python获得模型转换所需要的npz文件
im = cv2.imread(im)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
#[640 640]为ppyoloe_crn_s_300e_coco的输入大小
im_scale_y = 640 / float(im.shape[0])
im_scale_x = 640 / float(im.shape[1])
inputs = {}
inputs['image'] = np.array((im, )).astype('float32')
inputs['scale_factor'] = np.array([im_scale_y, im_scale_x]).astype('float32')
np.savez('inputs.npz', image = inputs['image'], scale_factor = inputs['scale_factor'])
#放入onnx模型文件ppyoloe_crn_s_300e_coco.onnx
mkdir workspace && cd workspace
# 将ONNX模型转换为mlir模型
model_transform.py \
--model_name ppyoloe_crn_s_300e_coco \
--model_def ../ppyoloe_crn_s_300e_coco.onnx \
--input_shapes [[1,3,640,640],[1,2]] \
--keep_aspect_ratio \
--pixel_format rgb \
--output_names p2o.Div.1,p2o.Concat.29 \
--test_input ../inputs.npz \
--test_result ppyoloe_crn_s_300e_coco_top_outputs.npz \
--mlir ppyoloe_crn_s_300e_coco.mlir
```
## 6. 注意
**由于TPU-MLIR当前不支持后处理算法所以需要查看后处理的输入作为网络的输出**
具体方法为output_names需要通过[NETRO](https://netron.app/) 查看网页中打开需要转换的ONNX模型搜索NonMaxSuppression节点
查看INPUTS中boxes和scores的名字这个两个名字就是我们所需的output_names
例如使用Netron可视化后可以得到如下图片
![](https://user-images.githubusercontent.com/120167928/210939488-a37e6c8b-474c-4948-8362-2066ee7a2ecb.png)
找到蓝色方框标记的NonMaxSuppression节点可以看到红色方框标记的两个节点名称为p2o.Div.1,p2o.Concat.29
``` bash
# 将mlir模型转换为BM1684x的F32 bmodel模型
model_deploy.py \
--mlir ppyoloe_crn_s_300e_coco.mlir \
--quantize F32 \
--chip bm1684x \
--test_input ppyoloe_crn_s_300e_coco_in_f32.npz \
--test_reference ppyoloe_crn_s_300e_coco_top_outputs.npz \
--model ppyoloe_crn_s_300e_coco_1684x_f32.bmodel
```
最终获得可以在BM1684x上能够运行的bmodel模型ppyoloe_crn_s_300e_coco_1684x_f32.bmodel。如果需要进一步对模型进行加速可以将ONNX模型转换为INT8 bmodel具体步骤参见[TPU-MLIR文档](https://github.com/sophgo/tpu-mlir/blob/master/README.md)。
## 7. 详细的部署示例
- [Cpp部署](./cpp)
- [python部署](./python)

View File

@@ -0,0 +1,14 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
set(ENABLE_LITE_BACKEND OFF)
#set(FDLIB ${FASTDEPLOY_INSTALL_DIR})
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
include_directories(${FASTDEPLOY_INCS})
include_directories(${FastDeploy_INCLUDE_DIRS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,57 @@
# PaddleDetection 算能 C++部署示例
本目录下提供`infer.cc`,`快速完成 PP-YOLOE ,在SOPHGO BM1684x板子上加速部署的示例。PP-YOLOV8和 PicoDet的部署逻辑类似只需要切换模型即可。
## 1. 部署环境准备
在部署前,需自行编译基于算能硬件的预测库,参考文档[算能硬件部署环境](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#算能硬件部署环境)
## 2. 部署模型准备
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleDetection部署模型](../README.md)。
## 3. 生成基本目录文件
该例程由以下几个部分组成
```text
.
├── CMakeLists.txt
├── fastdeploy-sophgo # 编译文件夹
├── image # 存放图片的文件夹
├── infer.cc
└── model # 存放模型文件的文件夹
```
## 4. 运行部署示例
### 4.1 编译并拷贝SDK到thirdpartys文件夹
请参考[SOPHGO部署库编译](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/sophgo.md)仓库编译SDK编译完成后将在build目录下生成fastdeploy-sophgo目录.
### 4.2 拷贝模型文件以及配置文件至model文件夹
将Paddle模型转换为SOPHGO bmodel模型转换步骤参考[文档](../README.md)
将转换后的SOPHGO bmodel模型文件拷贝至model中
### 4.3 准备测试图片至image文件夹
```bash
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
cp 000000014439.jpg ./images
```
### 4.4 编译example
```bash
cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-sophgo
make
```
## 4.5 运行例程
```bash
#ppyoloe推理示例
./infer_demo model images/000000014439.jpg
```
## 5. 更多指南
- [FastDeploy部署PaddleDetection模型概览](../../)
- [Python部署](../python)
- [模型转换](../README.md)

View File

@@ -0,0 +1,60 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/time.h>
#include <iostream>
#include <string>
#include "fastdeploy/vision.h"
void SophgoInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + "/ppyoloe_crn_s_300e_coco_1684x_f32.bmodel";
auto params_file = "";
auto config_file = model_dir + "/infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseSophgo();
auto format = fastdeploy::ModelFormat::SOPHGO;
auto model = fastdeploy::vision::detection::PPYOLOE(
model_file, params_file, config_file, option, format);
model.GetPostprocessor().ApplyNMS();
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("infer_sophgo.jpg", vis_im);
std::cout << "Visualized result saved in ./infer_sophgo.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/image, "
"e.g ./infer_demo ./model_dir ./test.jpeg"
<< std::endl;
return -1;
}
SophgoInfer(argv[1], argv[2]);
return 0;
}

View File

@@ -0,0 +1,30 @@
# PaddleDetection Python部署示例
## 1. 部署环境准备
在部署前需自行编译基于算能硬件的FastDeploy python wheel包并安装参考文档[算能硬件部署环境](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#算能硬件部署环境)
本目录下提供`infer.py`, 快速完成 PP-YOLOE ,在SOPHGO TPU上部署的示例执行如下脚本即可完成。PP-YOLOV8和 PicoDet的部署逻辑类似只需要切换模型即可。
## 2. 部署模型准备
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleDetection部署模型](../README.md)。
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection/deploy/fastdeploy/sophgo/python
# 下载图片
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# 推理
#ppyoloe推理示例
python3 infer.py --model_file model/ppyoloe_crn_s_300e_coco_1684x_f32.bmodel --config_file model/infer_cfg.yml --image_file ./000000014439.jpg
# 运行完成后返回结果如下所示
可视化结果存储在sophgo_result.jpg中
```
## 3. 更多指南
- [C++部署](../cpp)
- [转换PP-YOLOE SOPHGO模型文档](../README.md)

View File

@@ -0,0 +1,59 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_file", required=True, help="Path of sophgo model.")
parser.add_argument("--config_file", required=True, help="Path of config.")
parser.add_argument(
"--image_file", type=str, required=True, help="Path of test image file.")
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
model_file = args.model_file
params_file = ""
config_file = args.config_file
# setup runtime
runtime_option = fd.RuntimeOption()
runtime_option.use_sophgo()
model = fd.vision.detection.PPYOLOE(
model_file,
params_file,
config_file,
runtime_option=runtime_option,
model_format=fd.ModelFormat.SOPHGO)
model.postprocessor.apply_nms()
# predict
im = cv2.imread(args.image_file)
result = model.predict(im)
print(result)
# visualize
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("sophgo_result.jpg", vis_im)
print("Visualized result save in ./sophgo_result.jpg")