更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,30 @@
# PaddleDetection Python部署示例
## 1. 部署环境准备
在部署前需自行编译基于算能硬件的FastDeploy python wheel包并安装参考文档[算能硬件部署环境](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#算能硬件部署环境)
本目录下提供`infer.py`, 快速完成 PP-YOLOE ,在SOPHGO TPU上部署的示例执行如下脚本即可完成。PP-YOLOV8和 PicoDet的部署逻辑类似只需要切换模型即可。
## 2. 部署模型准备
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleDetection部署模型](../README.md)。
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection/deploy/fastdeploy/sophgo/python
# 下载图片
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# 推理
#ppyoloe推理示例
python3 infer.py --model_file model/ppyoloe_crn_s_300e_coco_1684x_f32.bmodel --config_file model/infer_cfg.yml --image_file ./000000014439.jpg
# 运行完成后返回结果如下所示
可视化结果存储在sophgo_result.jpg中
```
## 3. 更多指南
- [C++部署](../cpp)
- [转换PP-YOLOE SOPHGO模型文档](../README.md)

View File

@@ -0,0 +1,59 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_file", required=True, help="Path of sophgo model.")
parser.add_argument("--config_file", required=True, help="Path of config.")
parser.add_argument(
"--image_file", type=str, required=True, help="Path of test image file.")
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
model_file = args.model_file
params_file = ""
config_file = args.config_file
# setup runtime
runtime_option = fd.RuntimeOption()
runtime_option.use_sophgo()
model = fd.vision.detection.PPYOLOE(
model_file,
params_file,
config_file,
runtime_option=runtime_option,
model_format=fd.ModelFormat.SOPHGO)
model.postprocessor.apply_nms()
# predict
im = cv2.imread(args.image_file)
result = model.predict(im)
print(result)
# visualize
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("sophgo_result.jpg", vis_im)
print("Visualized result save in ./sophgo_result.jpg")