更换文档检测模型
This commit is contained in:
691
paddle_detection/deploy/pipeline/pphuman/action_infer.py
Normal file
691
paddle_detection/deploy/pipeline/pphuman/action_infer.py
Normal file
@@ -0,0 +1,691 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import yaml
|
||||
import glob
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import math
|
||||
import paddle
|
||||
import sys
|
||||
try:
|
||||
from collections.abc import Sequence
|
||||
except Exception:
|
||||
from collections import Sequence
|
||||
|
||||
# add deploy path of PaddleDetection to sys.path
|
||||
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
|
||||
sys.path.insert(0, parent_path)
|
||||
|
||||
from paddle.inference import Config, create_predictor
|
||||
from python.utils import argsparser, Timer, get_current_memory_mb
|
||||
from python.benchmark_utils import PaddleInferBenchmark
|
||||
from python.infer import Detector, print_arguments
|
||||
from attr_infer import AttrDetector
|
||||
|
||||
|
||||
class SkeletonActionRecognizer(Detector):
|
||||
"""
|
||||
Args:
|
||||
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
|
||||
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
|
||||
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
|
||||
batch_size (int): size of pre batch in inference
|
||||
trt_min_shape (int): min shape for dynamic shape in trt
|
||||
trt_max_shape (int): max shape for dynamic shape in trt
|
||||
trt_opt_shape (int): opt shape for dynamic shape in trt
|
||||
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
|
||||
calibration, trt_calib_mode need to set True
|
||||
cpu_threads (int): cpu threads
|
||||
enable_mkldnn (bool): whether to open MKLDNN
|
||||
threshold (float): The threshold of score for visualization
|
||||
window_size(int): Temporal size of skeleton feature.
|
||||
random_pad (bool): Whether do random padding when frame length < window_size.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model_dir,
|
||||
device='CPU',
|
||||
run_mode='paddle',
|
||||
batch_size=1,
|
||||
trt_min_shape=1,
|
||||
trt_max_shape=1280,
|
||||
trt_opt_shape=640,
|
||||
trt_calib_mode=False,
|
||||
cpu_threads=1,
|
||||
enable_mkldnn=False,
|
||||
output_dir='output',
|
||||
threshold=0.5,
|
||||
window_size=100,
|
||||
random_pad=False):
|
||||
assert batch_size == 1, "SkeletonActionRecognizer only support batch_size=1 now."
|
||||
super(SkeletonActionRecognizer, self).__init__(
|
||||
model_dir=model_dir,
|
||||
device=device,
|
||||
run_mode=run_mode,
|
||||
batch_size=batch_size,
|
||||
trt_min_shape=trt_min_shape,
|
||||
trt_max_shape=trt_max_shape,
|
||||
trt_opt_shape=trt_opt_shape,
|
||||
trt_calib_mode=trt_calib_mode,
|
||||
cpu_threads=cpu_threads,
|
||||
enable_mkldnn=enable_mkldnn,
|
||||
output_dir=output_dir,
|
||||
threshold=threshold,
|
||||
delete_shuffle_pass=True)
|
||||
|
||||
@classmethod
|
||||
def init_with_cfg(cls, args, cfg):
|
||||
return cls(model_dir=cfg['model_dir'],
|
||||
batch_size=cfg['batch_size'],
|
||||
window_size=cfg['max_frames'],
|
||||
device=args.device,
|
||||
run_mode=args.run_mode,
|
||||
trt_min_shape=args.trt_min_shape,
|
||||
trt_max_shape=args.trt_max_shape,
|
||||
trt_opt_shape=args.trt_opt_shape,
|
||||
trt_calib_mode=args.trt_calib_mode,
|
||||
cpu_threads=args.cpu_threads,
|
||||
enable_mkldnn=args.enable_mkldnn)
|
||||
|
||||
def predict(self, repeats=1):
|
||||
'''
|
||||
Args:
|
||||
repeats (int): repeat number for prediction
|
||||
Returns:
|
||||
results (dict):
|
||||
'''
|
||||
# model prediction
|
||||
output_names = self.predictor.get_output_names()
|
||||
for i in range(repeats):
|
||||
self.predictor.run()
|
||||
output_tensor = self.predictor.get_output_handle(output_names[0])
|
||||
np_output = output_tensor.copy_to_cpu()
|
||||
result = dict(output=np_output)
|
||||
return result
|
||||
|
||||
def predict_skeleton(self, skeleton_list, run_benchmark=False, repeats=1):
|
||||
results = []
|
||||
for i, skeleton in enumerate(skeleton_list):
|
||||
if run_benchmark:
|
||||
# preprocess
|
||||
inputs = self.preprocess(skeleton) # warmup
|
||||
self.det_times.preprocess_time_s.start()
|
||||
inputs = self.preprocess(skeleton)
|
||||
self.det_times.preprocess_time_s.end()
|
||||
|
||||
# model prediction
|
||||
result = self.predict(repeats=repeats) # warmup
|
||||
self.det_times.inference_time_s.start()
|
||||
result = self.predict(repeats=repeats)
|
||||
self.det_times.inference_time_s.end(repeats=repeats)
|
||||
|
||||
# postprocess
|
||||
result_warmup = self.postprocess(inputs, result) # warmup
|
||||
self.det_times.postprocess_time_s.start()
|
||||
result = self.postprocess(inputs, result)
|
||||
self.det_times.postprocess_time_s.end()
|
||||
self.det_times.img_num += len(skeleton)
|
||||
|
||||
cm, gm, gu = get_current_memory_mb()
|
||||
self.cpu_mem += cm
|
||||
self.gpu_mem += gm
|
||||
self.gpu_util += gu
|
||||
else:
|
||||
# preprocess
|
||||
self.det_times.preprocess_time_s.start()
|
||||
inputs = self.preprocess(skeleton)
|
||||
self.det_times.preprocess_time_s.end()
|
||||
|
||||
# model prediction
|
||||
self.det_times.inference_time_s.start()
|
||||
result = self.predict()
|
||||
self.det_times.inference_time_s.end()
|
||||
|
||||
# postprocess
|
||||
self.det_times.postprocess_time_s.start()
|
||||
result = self.postprocess(inputs, result)
|
||||
self.det_times.postprocess_time_s.end()
|
||||
self.det_times.img_num += len(skeleton)
|
||||
|
||||
results.append(result)
|
||||
return results
|
||||
|
||||
def predict_skeleton_with_mot(self, skeleton_with_mot, run_benchmark=False):
|
||||
"""
|
||||
skeleton_with_mot (dict): includes individual skeleton sequences, which shape is [C, T, K, 1]
|
||||
and its corresponding track id.
|
||||
"""
|
||||
|
||||
skeleton_list = skeleton_with_mot["skeleton"]
|
||||
mot_id = skeleton_with_mot["mot_id"]
|
||||
act_res = self.predict_skeleton(skeleton_list, run_benchmark, repeats=1)
|
||||
results = list(zip(mot_id, act_res))
|
||||
return results
|
||||
|
||||
def preprocess(self, data):
|
||||
preprocess_ops = []
|
||||
for op_info in self.pred_config.preprocess_infos:
|
||||
new_op_info = op_info.copy()
|
||||
op_type = new_op_info.pop('type')
|
||||
preprocess_ops.append(eval(op_type)(**new_op_info))
|
||||
|
||||
input_lst = []
|
||||
data = action_preprocess(data, preprocess_ops)
|
||||
input_lst.append(data)
|
||||
input_names = self.predictor.get_input_names()
|
||||
inputs = {}
|
||||
inputs['data_batch_0'] = np.stack(input_lst, axis=0).astype('float32')
|
||||
|
||||
for i in range(len(input_names)):
|
||||
input_tensor = self.predictor.get_input_handle(input_names[i])
|
||||
input_tensor.copy_from_cpu(inputs[input_names[i]])
|
||||
|
||||
return inputs
|
||||
|
||||
def postprocess(self, inputs, result):
|
||||
# postprocess output of predictor
|
||||
output_logit = result['output'][0]
|
||||
classes = np.argpartition(output_logit, -1)[-1:]
|
||||
classes = classes[np.argsort(-output_logit[classes])]
|
||||
scores = output_logit[classes]
|
||||
result = {'class': classes, 'score': scores}
|
||||
return result
|
||||
|
||||
|
||||
def action_preprocess(input, preprocess_ops):
|
||||
"""
|
||||
input (str | numpy.array): if input is str, it should be a legal file path with numpy array saved.
|
||||
Otherwise it should be numpy.array as direct input.
|
||||
return (numpy.array)
|
||||
"""
|
||||
if isinstance(input, str):
|
||||
assert os.path.isfile(input) is not None, "{0} not exists".format(input)
|
||||
data = np.load(input)
|
||||
else:
|
||||
data = input
|
||||
for operator in preprocess_ops:
|
||||
data = operator(data)
|
||||
return data
|
||||
|
||||
|
||||
class AutoPadding(object):
|
||||
"""
|
||||
Sample or Padding frame skeleton feature.
|
||||
Args:
|
||||
window_size (int): Temporal size of skeleton feature.
|
||||
random_pad (bool): Whether do random padding when frame length < window size. Default: False.
|
||||
"""
|
||||
|
||||
def __init__(self, window_size=100, random_pad=False):
|
||||
self.window_size = window_size
|
||||
self.random_pad = random_pad
|
||||
|
||||
def get_frame_num(self, data):
|
||||
C, T, V, M = data.shape
|
||||
for i in range(T - 1, -1, -1):
|
||||
tmp = np.sum(data[:, i, :, :])
|
||||
if tmp > 0:
|
||||
T = i + 1
|
||||
break
|
||||
return T
|
||||
|
||||
def __call__(self, results):
|
||||
data = results
|
||||
|
||||
C, T, V, M = data.shape
|
||||
T = self.get_frame_num(data)
|
||||
if T == self.window_size:
|
||||
data_pad = data[:, :self.window_size, :, :]
|
||||
elif T < self.window_size:
|
||||
begin = random.randint(
|
||||
0, self.window_size - T) if self.random_pad else 0
|
||||
data_pad = np.zeros((C, self.window_size, V, M))
|
||||
data_pad[:, begin:begin + T, :, :] = data[:, :T, :, :]
|
||||
else:
|
||||
if self.random_pad:
|
||||
index = np.random.choice(
|
||||
T, self.window_size, replace=False).astype('int64')
|
||||
else:
|
||||
index = np.linspace(0, T, self.window_size).astype("int64")
|
||||
data_pad = data[:, index, :, :]
|
||||
|
||||
return data_pad
|
||||
|
||||
|
||||
def get_test_skeletons(input_file):
|
||||
assert input_file is not None, "--action_file can not be None"
|
||||
input_data = np.load(input_file)
|
||||
if input_data.ndim == 4:
|
||||
return [input_data]
|
||||
elif input_data.ndim == 5:
|
||||
output = list(
|
||||
map(lambda x: np.squeeze(x, 0),
|
||||
np.split(input_data, input_data.shape[0], 0)))
|
||||
return output
|
||||
else:
|
||||
raise ValueError(
|
||||
"Now only support input with shape: (N, C, T, K, M) or (C, T, K, M)")
|
||||
|
||||
|
||||
class DetActionRecognizer(object):
|
||||
"""
|
||||
Args:
|
||||
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
|
||||
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
|
||||
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
|
||||
batch_size (int): size of pre batch in inference
|
||||
trt_min_shape (int): min shape for dynamic shape in trt
|
||||
trt_max_shape (int): max shape for dynamic shape in trt
|
||||
trt_opt_shape (int): opt shape for dynamic shape in trt
|
||||
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
|
||||
calibration, trt_calib_mode need to set True
|
||||
cpu_threads (int): cpu threads
|
||||
enable_mkldnn (bool): whether to open MKLDNN
|
||||
threshold (float): The threshold of score for action feature object detection.
|
||||
display_frames (int): The duration for corresponding detected action.
|
||||
skip_frame_num (int): The number of frames for interval prediction. A skipped frame will
|
||||
reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
|
||||
is 0.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model_dir,
|
||||
device='CPU',
|
||||
run_mode='paddle',
|
||||
batch_size=1,
|
||||
trt_min_shape=1,
|
||||
trt_max_shape=1280,
|
||||
trt_opt_shape=640,
|
||||
trt_calib_mode=False,
|
||||
cpu_threads=1,
|
||||
enable_mkldnn=False,
|
||||
output_dir='output',
|
||||
threshold=0.5,
|
||||
display_frames=20,
|
||||
skip_frame_num=0):
|
||||
super(DetActionRecognizer, self).__init__()
|
||||
self.detector = Detector(
|
||||
model_dir=model_dir,
|
||||
device=device,
|
||||
run_mode=run_mode,
|
||||
batch_size=batch_size,
|
||||
trt_min_shape=trt_min_shape,
|
||||
trt_max_shape=trt_max_shape,
|
||||
trt_opt_shape=trt_opt_shape,
|
||||
trt_calib_mode=trt_calib_mode,
|
||||
cpu_threads=cpu_threads,
|
||||
enable_mkldnn=enable_mkldnn,
|
||||
output_dir=output_dir,
|
||||
threshold=threshold)
|
||||
self.threshold = threshold
|
||||
self.frame_life = display_frames
|
||||
self.result_history = {}
|
||||
self.skip_frame_num = skip_frame_num
|
||||
self.skip_frame_cnt = 0
|
||||
self.id_in_last_frame = []
|
||||
|
||||
@classmethod
|
||||
def init_with_cfg(cls, args, cfg):
|
||||
return cls(model_dir=cfg['model_dir'],
|
||||
batch_size=cfg['batch_size'],
|
||||
threshold=cfg['threshold'],
|
||||
display_frames=cfg['display_frames'],
|
||||
skip_frame_num=cfg['skip_frame_num'],
|
||||
device=args.device,
|
||||
run_mode=args.run_mode,
|
||||
trt_min_shape=args.trt_min_shape,
|
||||
trt_max_shape=args.trt_max_shape,
|
||||
trt_opt_shape=args.trt_opt_shape,
|
||||
trt_calib_mode=args.trt_calib_mode,
|
||||
cpu_threads=args.cpu_threads,
|
||||
enable_mkldnn=args.enable_mkldnn)
|
||||
|
||||
def predict(self, images, mot_result):
|
||||
if self.skip_frame_cnt == 0 or (not self.check_id_is_same(mot_result)):
|
||||
det_result = self.detector.predict_image(images, visual=False)
|
||||
result = self.postprocess(det_result, mot_result)
|
||||
else:
|
||||
result = self.reuse_result(mot_result)
|
||||
|
||||
self.skip_frame_cnt += 1
|
||||
if self.skip_frame_cnt >= self.skip_frame_num:
|
||||
self.skip_frame_cnt = 0
|
||||
|
||||
return result
|
||||
|
||||
def postprocess(self, det_result, mot_result):
|
||||
np_boxes_num = det_result['boxes_num']
|
||||
if np_boxes_num[0] <= 0:
|
||||
return [[], []]
|
||||
|
||||
mot_bboxes = mot_result.get('boxes')
|
||||
|
||||
cur_box_idx = 0
|
||||
mot_id = []
|
||||
act_res = []
|
||||
for idx in range(len(mot_bboxes)):
|
||||
tracker_id = mot_bboxes[idx, 0]
|
||||
|
||||
# Current now, class 0 is positive, class 1 is negative.
|
||||
action_ret = {'class': 1.0, 'score': -1.0}
|
||||
box_num = np_boxes_num[idx]
|
||||
boxes = det_result['boxes'][cur_box_idx:cur_box_idx + box_num]
|
||||
cur_box_idx += box_num
|
||||
isvalid = (boxes[:, 1] > self.threshold) & (boxes[:, 0] == 0)
|
||||
valid_boxes = boxes[isvalid, :]
|
||||
|
||||
if valid_boxes.shape[0] >= 1:
|
||||
action_ret['class'] = valid_boxes[0, 0]
|
||||
action_ret['score'] = valid_boxes[0, 1]
|
||||
self.result_history[
|
||||
tracker_id] = [0, self.frame_life, valid_boxes[0, 1]]
|
||||
else:
|
||||
history_det, life_remain, history_score = self.result_history.get(
|
||||
tracker_id, [1, self.frame_life, -1.0])
|
||||
action_ret['class'] = history_det
|
||||
action_ret['score'] = -1.0
|
||||
life_remain -= 1
|
||||
if life_remain <= 0 and tracker_id in self.result_history:
|
||||
del (self.result_history[tracker_id])
|
||||
elif tracker_id in self.result_history:
|
||||
self.result_history[tracker_id][1] = life_remain
|
||||
else:
|
||||
self.result_history[tracker_id] = [
|
||||
history_det, life_remain, history_score
|
||||
]
|
||||
|
||||
mot_id.append(tracker_id)
|
||||
act_res.append(action_ret)
|
||||
result = list(zip(mot_id, act_res))
|
||||
self.id_in_last_frame = mot_id
|
||||
|
||||
return result
|
||||
|
||||
def check_id_is_same(self, mot_result):
|
||||
mot_bboxes = mot_result.get('boxes')
|
||||
for idx in range(len(mot_bboxes)):
|
||||
tracker_id = mot_bboxes[idx, 0]
|
||||
if tracker_id not in self.id_in_last_frame:
|
||||
return False
|
||||
return True
|
||||
|
||||
def reuse_result(self, mot_result):
|
||||
# This function reusing previous results of the same ID directly.
|
||||
mot_bboxes = mot_result.get('boxes')
|
||||
|
||||
mot_id = []
|
||||
act_res = []
|
||||
|
||||
for idx in range(len(mot_bboxes)):
|
||||
tracker_id = mot_bboxes[idx, 0]
|
||||
history_cls, life_remain, history_score = self.result_history.get(
|
||||
tracker_id, [1, 0, -1.0])
|
||||
|
||||
life_remain -= 1
|
||||
if tracker_id in self.result_history:
|
||||
self.result_history[tracker_id][1] = life_remain
|
||||
|
||||
action_ret = {'class': history_cls, 'score': history_score}
|
||||
mot_id.append(tracker_id)
|
||||
act_res.append(action_ret)
|
||||
|
||||
result = list(zip(mot_id, act_res))
|
||||
self.id_in_last_frame = mot_id
|
||||
|
||||
return result
|
||||
|
||||
|
||||
class ClsActionRecognizer(AttrDetector):
|
||||
"""
|
||||
Args:
|
||||
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
|
||||
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
|
||||
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
|
||||
batch_size (int): size of pre batch in inference
|
||||
trt_min_shape (int): min shape for dynamic shape in trt
|
||||
trt_max_shape (int): max shape for dynamic shape in trt
|
||||
trt_opt_shape (int): opt shape for dynamic shape in trt
|
||||
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
|
||||
calibration, trt_calib_mode need to set True
|
||||
cpu_threads (int): cpu threads
|
||||
enable_mkldnn (bool): whether to open MKLDNN
|
||||
threshold (float): The threshold of score for action feature object detection.
|
||||
display_frames (int): The duration for corresponding detected action.
|
||||
skip_frame_num (int): The number of frames for interval prediction. A skipped frame will
|
||||
reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
|
||||
is 0.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model_dir,
|
||||
device='CPU',
|
||||
run_mode='paddle',
|
||||
batch_size=1,
|
||||
trt_min_shape=1,
|
||||
trt_max_shape=1280,
|
||||
trt_opt_shape=640,
|
||||
trt_calib_mode=False,
|
||||
cpu_threads=1,
|
||||
enable_mkldnn=False,
|
||||
output_dir='output',
|
||||
threshold=0.5,
|
||||
display_frames=80,
|
||||
skip_frame_num=0):
|
||||
super(ClsActionRecognizer, self).__init__(
|
||||
model_dir=model_dir,
|
||||
device=device,
|
||||
run_mode=run_mode,
|
||||
batch_size=batch_size,
|
||||
trt_min_shape=trt_min_shape,
|
||||
trt_max_shape=trt_max_shape,
|
||||
trt_opt_shape=trt_opt_shape,
|
||||
trt_calib_mode=trt_calib_mode,
|
||||
cpu_threads=cpu_threads,
|
||||
enable_mkldnn=enable_mkldnn,
|
||||
output_dir=output_dir,
|
||||
threshold=threshold)
|
||||
self.threshold = threshold
|
||||
self.frame_life = display_frames
|
||||
self.result_history = {}
|
||||
self.skip_frame_num = skip_frame_num
|
||||
self.skip_frame_cnt = 0
|
||||
self.id_in_last_frame = []
|
||||
|
||||
@classmethod
|
||||
def init_with_cfg(cls, args, cfg):
|
||||
return cls(model_dir=cfg['model_dir'],
|
||||
batch_size=cfg['batch_size'],
|
||||
threshold=cfg['threshold'],
|
||||
display_frames=cfg['display_frames'],
|
||||
skip_frame_num=cfg['skip_frame_num'],
|
||||
device=args.device,
|
||||
run_mode=args.run_mode,
|
||||
trt_min_shape=args.trt_min_shape,
|
||||
trt_max_shape=args.trt_max_shape,
|
||||
trt_opt_shape=args.trt_opt_shape,
|
||||
trt_calib_mode=args.trt_calib_mode,
|
||||
cpu_threads=args.cpu_threads,
|
||||
enable_mkldnn=args.enable_mkldnn)
|
||||
|
||||
def predict_with_mot(self, images, mot_result):
|
||||
if self.skip_frame_cnt == 0 or (not self.check_id_is_same(mot_result)):
|
||||
images = self.crop_half_body(images)
|
||||
cls_result = self.predict_image(images, visual=False)["output"]
|
||||
result = self.match_action_with_id(cls_result, mot_result)
|
||||
else:
|
||||
result = self.reuse_result(mot_result)
|
||||
|
||||
self.skip_frame_cnt += 1
|
||||
if self.skip_frame_cnt >= self.skip_frame_num:
|
||||
self.skip_frame_cnt = 0
|
||||
|
||||
return result
|
||||
|
||||
def crop_half_body(self, images):
|
||||
crop_images = []
|
||||
for image in images:
|
||||
h = image.shape[0]
|
||||
crop_images.append(image[:h // 2 + 1, :, :])
|
||||
return crop_images
|
||||
|
||||
def postprocess(self, inputs, result):
|
||||
# postprocess output of predictor
|
||||
im_results = result['output']
|
||||
batch_res = []
|
||||
for res in im_results:
|
||||
action_res = res.tolist()
|
||||
for cid, score in enumerate(action_res):
|
||||
action_res[cid] = score
|
||||
batch_res.append(action_res)
|
||||
result = {'output': batch_res}
|
||||
return result
|
||||
|
||||
def match_action_with_id(self, cls_result, mot_result):
|
||||
mot_bboxes = mot_result.get('boxes')
|
||||
|
||||
mot_id = []
|
||||
act_res = []
|
||||
|
||||
for idx in range(len(mot_bboxes)):
|
||||
tracker_id = mot_bboxes[idx, 0]
|
||||
|
||||
cls_id_res = 1
|
||||
cls_score_res = -1.0
|
||||
for cls_id in range(len(cls_result[idx])):
|
||||
score = cls_result[idx][cls_id]
|
||||
if score > cls_score_res:
|
||||
cls_id_res = cls_id
|
||||
cls_score_res = score
|
||||
|
||||
# Current now, class 0 is positive, class 1 is negative.
|
||||
if cls_id_res == 1 or (cls_id_res == 0 and
|
||||
cls_score_res < self.threshold):
|
||||
history_cls, life_remain, history_score = self.result_history.get(
|
||||
tracker_id, [1, self.frame_life, -1.0])
|
||||
cls_id_res = history_cls
|
||||
cls_score_res = 1 - cls_score_res
|
||||
life_remain -= 1
|
||||
if life_remain <= 0 and tracker_id in self.result_history:
|
||||
del (self.result_history[tracker_id])
|
||||
elif tracker_id in self.result_history:
|
||||
self.result_history[tracker_id][1] = life_remain
|
||||
else:
|
||||
self.result_history[
|
||||
tracker_id] = [cls_id_res, life_remain, cls_score_res]
|
||||
else:
|
||||
self.result_history[
|
||||
tracker_id] = [cls_id_res, self.frame_life, cls_score_res]
|
||||
|
||||
action_ret = {'class': cls_id_res, 'score': cls_score_res}
|
||||
mot_id.append(tracker_id)
|
||||
act_res.append(action_ret)
|
||||
result = list(zip(mot_id, act_res))
|
||||
self.id_in_last_frame = mot_id
|
||||
|
||||
return result
|
||||
|
||||
def check_id_is_same(self, mot_result):
|
||||
mot_bboxes = mot_result.get('boxes')
|
||||
for idx in range(len(mot_bboxes)):
|
||||
tracker_id = mot_bboxes[idx, 0]
|
||||
if tracker_id not in self.id_in_last_frame:
|
||||
return False
|
||||
return True
|
||||
|
||||
def reuse_result(self, mot_result):
|
||||
# This function reusing previous results of the same ID directly.
|
||||
mot_bboxes = mot_result.get('boxes')
|
||||
|
||||
mot_id = []
|
||||
act_res = []
|
||||
|
||||
for idx in range(len(mot_bboxes)):
|
||||
tracker_id = mot_bboxes[idx, 0]
|
||||
history_cls, life_remain, history_score = self.result_history.get(
|
||||
tracker_id, [1, 0, -1.0])
|
||||
|
||||
life_remain -= 1
|
||||
if tracker_id in self.result_history:
|
||||
self.result_history[tracker_id][1] = life_remain
|
||||
|
||||
action_ret = {'class': history_cls, 'score': history_score}
|
||||
mot_id.append(tracker_id)
|
||||
act_res.append(action_ret)
|
||||
|
||||
result = list(zip(mot_id, act_res))
|
||||
self.id_in_last_frame = mot_id
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def main():
|
||||
detector = SkeletonActionRecognizer(
|
||||
FLAGS.model_dir,
|
||||
device=FLAGS.device,
|
||||
run_mode=FLAGS.run_mode,
|
||||
batch_size=FLAGS.batch_size,
|
||||
trt_min_shape=FLAGS.trt_min_shape,
|
||||
trt_max_shape=FLAGS.trt_max_shape,
|
||||
trt_opt_shape=FLAGS.trt_opt_shape,
|
||||
trt_calib_mode=FLAGS.trt_calib_mode,
|
||||
cpu_threads=FLAGS.cpu_threads,
|
||||
enable_mkldnn=FLAGS.enable_mkldnn,
|
||||
threshold=FLAGS.threshold,
|
||||
output_dir=FLAGS.output_dir,
|
||||
window_size=FLAGS.window_size,
|
||||
random_pad=FLAGS.random_pad)
|
||||
# predict from numpy array
|
||||
input_list = get_test_skeletons(FLAGS.action_file)
|
||||
detector.predict_skeleton(input_list, FLAGS.run_benchmark, repeats=10)
|
||||
if not FLAGS.run_benchmark:
|
||||
detector.det_times.info(average=True)
|
||||
else:
|
||||
mems = {
|
||||
'cpu_rss_mb': detector.cpu_mem / len(input_list),
|
||||
'gpu_rss_mb': detector.gpu_mem / len(input_list),
|
||||
'gpu_util': detector.gpu_util * 100 / len(input_list)
|
||||
}
|
||||
|
||||
perf_info = detector.det_times.report(average=True)
|
||||
model_dir = FLAGS.model_dir
|
||||
mode = FLAGS.run_mode
|
||||
model_info = {
|
||||
'model_name': model_dir.strip('/').split('/')[-1],
|
||||
'precision': mode.split('_')[-1]
|
||||
}
|
||||
data_info = {
|
||||
'batch_size': FLAGS.batch_size,
|
||||
'shape': "dynamic_shape",
|
||||
'data_num': perf_info['img_num']
|
||||
}
|
||||
det_log = PaddleInferBenchmark(detector.config, model_info, data_info,
|
||||
perf_info, mems)
|
||||
det_log('SkeletonAction')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
paddle.enable_static()
|
||||
parser = argsparser()
|
||||
FLAGS = parser.parse_args()
|
||||
print_arguments(FLAGS)
|
||||
FLAGS.device = FLAGS.device.upper()
|
||||
assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
|
||||
], "device should be CPU, GPU, NPU or XPU"
|
||||
assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
|
||||
|
||||
main()
|
||||
Reference in New Issue
Block a user