更换文档检测模型
This commit is contained in:
348
paddle_detection/deploy/pipeline/pphuman/attr_infer.py
Normal file
348
paddle_detection/deploy/pipeline/pphuman/attr_infer.py
Normal file
@@ -0,0 +1,348 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import yaml
|
||||
import glob
|
||||
from functools import reduce
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import math
|
||||
import paddle
|
||||
from paddle.inference import Config
|
||||
from paddle.inference import create_predictor
|
||||
|
||||
import sys
|
||||
# add deploy path of PaddleDetection to sys.path
|
||||
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
|
||||
sys.path.insert(0, parent_path)
|
||||
|
||||
from python.benchmark_utils import PaddleInferBenchmark
|
||||
from python.preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine
|
||||
from python.visualize import visualize_attr
|
||||
from python.utils import argsparser, Timer, get_current_memory_mb
|
||||
from python.infer import Detector, get_test_images, print_arguments, load_predictor
|
||||
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
|
||||
class AttrDetector(Detector):
|
||||
"""
|
||||
Args:
|
||||
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
|
||||
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
|
||||
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
|
||||
batch_size (int): size of pre batch in inference
|
||||
trt_min_shape (int): min shape for dynamic shape in trt
|
||||
trt_max_shape (int): max shape for dynamic shape in trt
|
||||
trt_opt_shape (int): opt shape for dynamic shape in trt
|
||||
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
|
||||
calibration, trt_calib_mode need to set True
|
||||
cpu_threads (int): cpu threads
|
||||
enable_mkldnn (bool): whether to open MKLDNN
|
||||
output_dir (str): The path of output
|
||||
threshold (float): The threshold of score for visualization
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_dir,
|
||||
device='CPU',
|
||||
run_mode='paddle',
|
||||
batch_size=1,
|
||||
trt_min_shape=1,
|
||||
trt_max_shape=1280,
|
||||
trt_opt_shape=640,
|
||||
trt_calib_mode=False,
|
||||
cpu_threads=1,
|
||||
enable_mkldnn=False,
|
||||
output_dir='output',
|
||||
threshold=0.5, ):
|
||||
super(AttrDetector, self).__init__(
|
||||
model_dir=model_dir,
|
||||
device=device,
|
||||
run_mode=run_mode,
|
||||
batch_size=batch_size,
|
||||
trt_min_shape=trt_min_shape,
|
||||
trt_max_shape=trt_max_shape,
|
||||
trt_opt_shape=trt_opt_shape,
|
||||
trt_calib_mode=trt_calib_mode,
|
||||
cpu_threads=cpu_threads,
|
||||
enable_mkldnn=enable_mkldnn,
|
||||
output_dir=output_dir,
|
||||
threshold=threshold, )
|
||||
|
||||
@classmethod
|
||||
def init_with_cfg(cls, args, cfg):
|
||||
return cls(model_dir=cfg['model_dir'],
|
||||
batch_size=cfg['batch_size'],
|
||||
device=args.device,
|
||||
run_mode=args.run_mode,
|
||||
trt_min_shape=args.trt_min_shape,
|
||||
trt_max_shape=args.trt_max_shape,
|
||||
trt_opt_shape=args.trt_opt_shape,
|
||||
trt_calib_mode=args.trt_calib_mode,
|
||||
cpu_threads=args.cpu_threads,
|
||||
enable_mkldnn=args.enable_mkldnn)
|
||||
|
||||
def get_label(self):
|
||||
return self.pred_config.labels
|
||||
|
||||
def postprocess(self, inputs, result):
|
||||
# postprocess output of predictor
|
||||
im_results = result['output']
|
||||
|
||||
labels = self.pred_config.labels
|
||||
age_list = ['AgeLess18', 'Age18-60', 'AgeOver60']
|
||||
direct_list = ['Front', 'Side', 'Back']
|
||||
bag_list = ['HandBag', 'ShoulderBag', 'Backpack']
|
||||
upper_list = ['UpperStride', 'UpperLogo', 'UpperPlaid', 'UpperSplice']
|
||||
lower_list = [
|
||||
'LowerStripe', 'LowerPattern', 'LongCoat', 'Trousers', 'Shorts',
|
||||
'Skirt&Dress'
|
||||
]
|
||||
glasses_threshold = 0.3
|
||||
hold_threshold = 0.6
|
||||
batch_res = []
|
||||
for res in im_results:
|
||||
res = res.tolist()
|
||||
label_res = []
|
||||
# gender
|
||||
gender = 'Female' if res[22] > self.threshold else 'Male'
|
||||
label_res.append(gender)
|
||||
# age
|
||||
age = age_list[np.argmax(res[19:22])]
|
||||
label_res.append(age)
|
||||
# direction
|
||||
direction = direct_list[np.argmax(res[23:])]
|
||||
label_res.append(direction)
|
||||
# glasses
|
||||
glasses = 'Glasses: '
|
||||
if res[1] > glasses_threshold:
|
||||
glasses += 'True'
|
||||
else:
|
||||
glasses += 'False'
|
||||
label_res.append(glasses)
|
||||
# hat
|
||||
hat = 'Hat: '
|
||||
if res[0] > self.threshold:
|
||||
hat += 'True'
|
||||
else:
|
||||
hat += 'False'
|
||||
label_res.append(hat)
|
||||
# hold obj
|
||||
hold_obj = 'HoldObjectsInFront: '
|
||||
if res[18] > hold_threshold:
|
||||
hold_obj += 'True'
|
||||
else:
|
||||
hold_obj += 'False'
|
||||
label_res.append(hold_obj)
|
||||
# bag
|
||||
bag = bag_list[np.argmax(res[15:18])]
|
||||
bag_score = res[15 + np.argmax(res[15:18])]
|
||||
bag_label = bag if bag_score > self.threshold else 'No bag'
|
||||
label_res.append(bag_label)
|
||||
# upper
|
||||
upper_label = 'Upper:'
|
||||
sleeve = 'LongSleeve' if res[3] > res[2] else 'ShortSleeve'
|
||||
upper_label += ' {}'.format(sleeve)
|
||||
upper_res = res[4:8]
|
||||
if np.max(upper_res) > self.threshold:
|
||||
upper_label += ' {}'.format(upper_list[np.argmax(upper_res)])
|
||||
label_res.append(upper_label)
|
||||
# lower
|
||||
lower_res = res[8:14]
|
||||
lower_label = 'Lower: '
|
||||
has_lower = False
|
||||
for i, l in enumerate(lower_res):
|
||||
if l > self.threshold:
|
||||
lower_label += ' {}'.format(lower_list[i])
|
||||
has_lower = True
|
||||
if not has_lower:
|
||||
lower_label += ' {}'.format(lower_list[np.argmax(lower_res)])
|
||||
|
||||
label_res.append(lower_label)
|
||||
# shoe
|
||||
shoe = 'Boots' if res[14] > self.threshold else 'No boots'
|
||||
label_res.append(shoe)
|
||||
|
||||
batch_res.append(label_res)
|
||||
result = {'output': batch_res}
|
||||
return result
|
||||
|
||||
def predict(self, repeats=1):
|
||||
'''
|
||||
Args:
|
||||
repeats (int): repeats number for prediction
|
||||
Returns:
|
||||
result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
|
||||
matix element:[class, score, x_min, y_min, x_max, y_max]
|
||||
MaskRCNN's result include 'masks': np.ndarray:
|
||||
shape: [N, im_h, im_w]
|
||||
'''
|
||||
# model prediction
|
||||
for i in range(repeats):
|
||||
self.predictor.run()
|
||||
output_names = self.predictor.get_output_names()
|
||||
output_tensor = self.predictor.get_output_handle(output_names[0])
|
||||
np_output = output_tensor.copy_to_cpu()
|
||||
result = dict(output=np_output)
|
||||
return result
|
||||
|
||||
def predict_image(self,
|
||||
image_list,
|
||||
run_benchmark=False,
|
||||
repeats=1,
|
||||
visual=True):
|
||||
batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
|
||||
results = []
|
||||
for i in range(batch_loop_cnt):
|
||||
start_index = i * self.batch_size
|
||||
end_index = min((i + 1) * self.batch_size, len(image_list))
|
||||
batch_image_list = image_list[start_index:end_index]
|
||||
if run_benchmark:
|
||||
# preprocess
|
||||
inputs = self.preprocess(batch_image_list) # warmup
|
||||
self.det_times.preprocess_time_s.start()
|
||||
inputs = self.preprocess(batch_image_list)
|
||||
self.det_times.preprocess_time_s.end()
|
||||
|
||||
# model prediction
|
||||
result = self.predict(repeats=repeats) # warmup
|
||||
self.det_times.inference_time_s.start()
|
||||
result = self.predict(repeats=repeats)
|
||||
self.det_times.inference_time_s.end(repeats=repeats)
|
||||
|
||||
# postprocess
|
||||
result_warmup = self.postprocess(inputs, result) # warmup
|
||||
self.det_times.postprocess_time_s.start()
|
||||
result = self.postprocess(inputs, result)
|
||||
self.det_times.postprocess_time_s.end()
|
||||
self.det_times.img_num += len(batch_image_list)
|
||||
|
||||
cm, gm, gu = get_current_memory_mb()
|
||||
self.cpu_mem += cm
|
||||
self.gpu_mem += gm
|
||||
self.gpu_util += gu
|
||||
else:
|
||||
# preprocess
|
||||
self.det_times.preprocess_time_s.start()
|
||||
inputs = self.preprocess(batch_image_list)
|
||||
self.det_times.preprocess_time_s.end()
|
||||
|
||||
# model prediction
|
||||
self.det_times.inference_time_s.start()
|
||||
result = self.predict()
|
||||
self.det_times.inference_time_s.end()
|
||||
|
||||
# postprocess
|
||||
self.det_times.postprocess_time_s.start()
|
||||
result = self.postprocess(inputs, result)
|
||||
self.det_times.postprocess_time_s.end()
|
||||
self.det_times.img_num += len(batch_image_list)
|
||||
|
||||
if visual:
|
||||
visualize(
|
||||
batch_image_list, result, output_dir=self.output_dir)
|
||||
|
||||
results.append(result)
|
||||
if visual:
|
||||
print('Test iter {}'.format(i))
|
||||
|
||||
results = self.merge_batch_result(results)
|
||||
return results
|
||||
|
||||
def merge_batch_result(self, batch_result):
|
||||
if len(batch_result) == 1:
|
||||
return batch_result[0]
|
||||
res_key = batch_result[0].keys()
|
||||
results = {k: [] for k in res_key}
|
||||
for res in batch_result:
|
||||
for k, v in res.items():
|
||||
results[k].extend(v)
|
||||
return results
|
||||
|
||||
|
||||
def visualize(image_list, batch_res, output_dir='output'):
|
||||
|
||||
# visualize the predict result
|
||||
batch_res = batch_res['output']
|
||||
for image_file, res in zip(image_list, batch_res):
|
||||
im = visualize_attr(image_file, [res])
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
img_name = os.path.split(image_file)[-1]
|
||||
out_path = os.path.join(output_dir, img_name)
|
||||
cv2.imwrite(out_path, im)
|
||||
print("save result to: " + out_path)
|
||||
|
||||
|
||||
def main():
|
||||
detector = AttrDetector(
|
||||
FLAGS.model_dir,
|
||||
device=FLAGS.device,
|
||||
run_mode=FLAGS.run_mode,
|
||||
batch_size=FLAGS.batch_size,
|
||||
trt_min_shape=FLAGS.trt_min_shape,
|
||||
trt_max_shape=FLAGS.trt_max_shape,
|
||||
trt_opt_shape=FLAGS.trt_opt_shape,
|
||||
trt_calib_mode=FLAGS.trt_calib_mode,
|
||||
cpu_threads=FLAGS.cpu_threads,
|
||||
enable_mkldnn=FLAGS.enable_mkldnn,
|
||||
threshold=FLAGS.threshold,
|
||||
output_dir=FLAGS.output_dir)
|
||||
|
||||
# predict from image
|
||||
if FLAGS.image_dir is None and FLAGS.image_file is not None:
|
||||
assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
|
||||
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
|
||||
detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
|
||||
if not FLAGS.run_benchmark:
|
||||
detector.det_times.info(average=True)
|
||||
else:
|
||||
mems = {
|
||||
'cpu_rss_mb': detector.cpu_mem / len(img_list),
|
||||
'gpu_rss_mb': detector.gpu_mem / len(img_list),
|
||||
'gpu_util': detector.gpu_util * 100 / len(img_list)
|
||||
}
|
||||
|
||||
perf_info = detector.det_times.report(average=True)
|
||||
model_dir = FLAGS.model_dir
|
||||
mode = FLAGS.run_mode
|
||||
model_info = {
|
||||
'model_name': model_dir.strip('/').split('/')[-1],
|
||||
'precision': mode.split('_')[-1]
|
||||
}
|
||||
data_info = {
|
||||
'batch_size': FLAGS.batch_size,
|
||||
'shape': "dynamic_shape",
|
||||
'data_num': perf_info['img_num']
|
||||
}
|
||||
det_log = PaddleInferBenchmark(detector.config, model_info, data_info,
|
||||
perf_info, mems)
|
||||
det_log('Attr')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
paddle.enable_static()
|
||||
parser = argsparser()
|
||||
FLAGS = parser.parse_args()
|
||||
print_arguments(FLAGS)
|
||||
FLAGS.device = FLAGS.device.upper()
|
||||
assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
|
||||
], "device should be CPU, GPU, XPU or NPU"
|
||||
assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
|
||||
|
||||
main()
|
||||
Reference in New Issue
Block a user