更换文档检测模型
This commit is contained in:
505
paddle_detection/deploy/pipeline/ppvehicle/vehicle_plateutils.py
Normal file
505
paddle_detection/deploy/pipeline/ppvehicle/vehicle_plateutils.py
Normal file
@@ -0,0 +1,505 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import platform
|
||||
import cv2
|
||||
import numpy as np
|
||||
import paddle
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
import math
|
||||
from paddle import inference
|
||||
import time
|
||||
import ast
|
||||
|
||||
|
||||
def create_predictor(args, cfg, mode):
|
||||
if mode == "det":
|
||||
model_dir = cfg['det_model_dir']
|
||||
else:
|
||||
model_dir = cfg['rec_model_dir']
|
||||
|
||||
if model_dir is None:
|
||||
print("not find {} model file path {}".format(mode, model_dir))
|
||||
sys.exit(0)
|
||||
|
||||
model_file_path = model_dir + "/inference.pdmodel"
|
||||
params_file_path = model_dir + "/inference.pdiparams"
|
||||
if not os.path.exists(model_file_path):
|
||||
raise ValueError("not find model file path {}".format(model_file_path))
|
||||
if not os.path.exists(params_file_path):
|
||||
raise ValueError("not find params file path {}".format(
|
||||
params_file_path))
|
||||
|
||||
config = inference.Config(model_file_path, params_file_path)
|
||||
|
||||
batch_size = 1
|
||||
|
||||
if args.device == "GPU":
|
||||
gpu_id = get_infer_gpuid()
|
||||
if gpu_id is None:
|
||||
print(
|
||||
"GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
|
||||
)
|
||||
config.enable_use_gpu(500, 0)
|
||||
|
||||
precision_map = {
|
||||
'trt_int8': inference.PrecisionType.Int8,
|
||||
'trt_fp32': inference.PrecisionType.Float32,
|
||||
'trt_fp16': inference.PrecisionType.Half
|
||||
}
|
||||
min_subgraph_size = 15
|
||||
if args.run_mode in precision_map.keys():
|
||||
config.enable_tensorrt_engine(
|
||||
workspace_size=(1 << 25) * batch_size,
|
||||
max_batch_size=batch_size,
|
||||
min_subgraph_size=min_subgraph_size,
|
||||
precision_mode=precision_map[args.run_mode])
|
||||
use_dynamic_shape = True
|
||||
|
||||
if mode == "det":
|
||||
min_input_shape = {
|
||||
"x": [1, 3, 50, 50],
|
||||
"conv2d_92.tmp_0": [1, 120, 20, 20],
|
||||
"conv2d_91.tmp_0": [1, 24, 10, 10],
|
||||
"conv2d_59.tmp_0": [1, 96, 20, 20],
|
||||
"nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
|
||||
"nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
|
||||
"conv2d_124.tmp_0": [1, 256, 20, 20],
|
||||
"nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
|
||||
"nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
|
||||
"nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
|
||||
"elementwise_add_7": [1, 56, 2, 2],
|
||||
"nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
|
||||
}
|
||||
max_input_shape = {
|
||||
"x": [1, 3, 1536, 1536],
|
||||
"conv2d_92.tmp_0": [1, 120, 400, 400],
|
||||
"conv2d_91.tmp_0": [1, 24, 200, 200],
|
||||
"conv2d_59.tmp_0": [1, 96, 400, 400],
|
||||
"nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
|
||||
"conv2d_124.tmp_0": [1, 256, 400, 400],
|
||||
"nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
|
||||
"nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
|
||||
"nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
|
||||
"nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
|
||||
"elementwise_add_7": [1, 56, 400, 400],
|
||||
"nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
|
||||
}
|
||||
opt_input_shape = {
|
||||
"x": [1, 3, 640, 640],
|
||||
"conv2d_92.tmp_0": [1, 120, 160, 160],
|
||||
"conv2d_91.tmp_0": [1, 24, 80, 80],
|
||||
"conv2d_59.tmp_0": [1, 96, 160, 160],
|
||||
"nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
|
||||
"nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
|
||||
"conv2d_124.tmp_0": [1, 256, 160, 160],
|
||||
"nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
|
||||
"nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
|
||||
"nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
|
||||
"elementwise_add_7": [1, 56, 40, 40],
|
||||
"nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
|
||||
}
|
||||
min_pact_shape = {
|
||||
"nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
|
||||
"nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
|
||||
"nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
|
||||
"nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
|
||||
}
|
||||
max_pact_shape = {
|
||||
"nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
|
||||
"nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
|
||||
"nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
|
||||
"nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
|
||||
}
|
||||
opt_pact_shape = {
|
||||
"nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
|
||||
"nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
|
||||
"nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
|
||||
"nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
|
||||
}
|
||||
min_input_shape.update(min_pact_shape)
|
||||
max_input_shape.update(max_pact_shape)
|
||||
opt_input_shape.update(opt_pact_shape)
|
||||
elif mode == "rec":
|
||||
imgH = int(cfg['rec_image_shape'][-2])
|
||||
min_input_shape = {"x": [1, 3, imgH, 10]}
|
||||
max_input_shape = {"x": [batch_size, 3, imgH, 2304]}
|
||||
opt_input_shape = {"x": [batch_size, 3, imgH, 320]}
|
||||
config.exp_disable_tensorrt_ops(["transpose2"])
|
||||
elif mode == "cls":
|
||||
min_input_shape = {"x": [1, 3, 48, 10]}
|
||||
max_input_shape = {"x": [batch_size, 3, 48, 1024]}
|
||||
opt_input_shape = {"x": [batch_size, 3, 48, 320]}
|
||||
else:
|
||||
use_dynamic_shape = False
|
||||
if use_dynamic_shape:
|
||||
config.set_trt_dynamic_shape_info(
|
||||
min_input_shape, max_input_shape, opt_input_shape)
|
||||
|
||||
else:
|
||||
config.disable_gpu()
|
||||
if hasattr(args, "cpu_threads"):
|
||||
config.set_cpu_math_library_num_threads(args.cpu_threads)
|
||||
else:
|
||||
# default cpu threads as 10
|
||||
config.set_cpu_math_library_num_threads(10)
|
||||
if args.enable_mkldnn:
|
||||
# cache 10 different shapes for mkldnn to avoid memory leak
|
||||
config.set_mkldnn_cache_capacity(10)
|
||||
config.enable_mkldnn()
|
||||
if args.run_mode == "fp16":
|
||||
config.enable_mkldnn_bfloat16()
|
||||
# enable memory optim
|
||||
config.enable_memory_optim()
|
||||
config.disable_glog_info()
|
||||
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
|
||||
config.delete_pass("matmul_transpose_reshape_fuse_pass")
|
||||
if mode == 'table':
|
||||
config.delete_pass("fc_fuse_pass") # not supported for table
|
||||
config.switch_use_feed_fetch_ops(False)
|
||||
config.switch_ir_optim(True)
|
||||
|
||||
# create predictor
|
||||
predictor = inference.create_predictor(config)
|
||||
input_names = predictor.get_input_names()
|
||||
for name in input_names:
|
||||
input_tensor = predictor.get_input_handle(name)
|
||||
output_tensors = get_output_tensors(cfg, mode, predictor)
|
||||
return predictor, input_tensor, output_tensors, config
|
||||
|
||||
|
||||
def get_output_tensors(cfg, mode, predictor):
|
||||
output_names = predictor.get_output_names()
|
||||
output_tensors = []
|
||||
output_name = 'softmax_0.tmp_0'
|
||||
if output_name in output_names:
|
||||
return [predictor.get_output_handle(output_name)]
|
||||
else:
|
||||
for output_name in output_names:
|
||||
output_tensor = predictor.get_output_handle(output_name)
|
||||
output_tensors.append(output_tensor)
|
||||
return output_tensors
|
||||
|
||||
|
||||
def get_infer_gpuid():
|
||||
sysstr = platform.system()
|
||||
if sysstr == "Windows":
|
||||
return 0
|
||||
|
||||
if not paddle.device.is_compiled_with_rocm():
|
||||
cmd = "env | grep CUDA_VISIBLE_DEVICES"
|
||||
else:
|
||||
cmd = "env | grep HIP_VISIBLE_DEVICES"
|
||||
env_cuda = os.popen(cmd).readlines()
|
||||
if len(env_cuda) == 0:
|
||||
return 0
|
||||
else:
|
||||
gpu_id = env_cuda[0].strip().split("=")[1]
|
||||
return int(gpu_id[0])
|
||||
|
||||
|
||||
def draw_e2e_res(dt_boxes, strs, img_path):
|
||||
src_im = cv2.imread(img_path)
|
||||
for box, str in zip(dt_boxes, strs):
|
||||
box = box.astype(np.int32).reshape((-1, 1, 2))
|
||||
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
||||
cv2.putText(
|
||||
src_im,
|
||||
str,
|
||||
org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
|
||||
fontFace=cv2.FONT_HERSHEY_COMPLEX,
|
||||
fontScale=0.7,
|
||||
color=(0, 255, 0),
|
||||
thickness=1)
|
||||
return src_im
|
||||
|
||||
|
||||
def draw_text_det_res(dt_boxes, img_path):
|
||||
src_im = cv2.imread(img_path)
|
||||
for box in dt_boxes:
|
||||
box = np.array(box).astype(np.int32).reshape(-1, 2)
|
||||
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
||||
return src_im
|
||||
|
||||
|
||||
def resize_img(img, input_size=600):
|
||||
"""
|
||||
resize img and limit the longest side of the image to input_size
|
||||
"""
|
||||
img = np.array(img)
|
||||
im_shape = img.shape
|
||||
im_size_max = np.max(im_shape[0:2])
|
||||
im_scale = float(input_size) / float(im_size_max)
|
||||
img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
|
||||
return img
|
||||
|
||||
|
||||
def draw_ocr(image,
|
||||
boxes,
|
||||
txts=None,
|
||||
scores=None,
|
||||
drop_score=0.5,
|
||||
font_path="./doc/fonts/simfang.ttf"):
|
||||
"""
|
||||
Visualize the results of OCR detection and recognition
|
||||
args:
|
||||
image(Image|array): RGB image
|
||||
boxes(list): boxes with shape(N, 4, 2)
|
||||
txts(list): the texts
|
||||
scores(list): txxs corresponding scores
|
||||
drop_score(float): only scores greater than drop_threshold will be visualized
|
||||
font_path: the path of font which is used to draw text
|
||||
return(array):
|
||||
the visualized img
|
||||
"""
|
||||
if scores is None:
|
||||
scores = [1] * len(boxes)
|
||||
box_num = len(boxes)
|
||||
for i in range(box_num):
|
||||
if scores is not None and (scores[i] < drop_score or
|
||||
math.isnan(scores[i])):
|
||||
continue
|
||||
box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
|
||||
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
|
||||
if txts is not None:
|
||||
img = np.array(resize_img(image, input_size=600))
|
||||
txt_img = text_visual(
|
||||
txts,
|
||||
scores,
|
||||
img_h=img.shape[0],
|
||||
img_w=600,
|
||||
threshold=drop_score,
|
||||
font_path=font_path)
|
||||
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
|
||||
return img
|
||||
return image
|
||||
|
||||
|
||||
def draw_ocr_box_txt(image,
|
||||
boxes,
|
||||
txts,
|
||||
scores=None,
|
||||
drop_score=0.5,
|
||||
font_path="./doc/simfang.ttf"):
|
||||
h, w = image.height, image.width
|
||||
img_left = image.copy()
|
||||
img_right = Image.new('RGB', (w, h), (255, 255, 255))
|
||||
|
||||
import random
|
||||
|
||||
random.seed(0)
|
||||
draw_left = ImageDraw.Draw(img_left)
|
||||
draw_right = ImageDraw.Draw(img_right)
|
||||
for idx, (box, txt) in enumerate(zip(boxes, txts)):
|
||||
if scores is not None and scores[idx] < drop_score:
|
||||
continue
|
||||
color = (random.randint(0, 255), random.randint(0, 255),
|
||||
random.randint(0, 255))
|
||||
draw_left.polygon(box, fill=color)
|
||||
draw_right.polygon(
|
||||
[
|
||||
box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
|
||||
box[2][1], box[3][0], box[3][1]
|
||||
],
|
||||
outline=color)
|
||||
box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
|
||||
1])**2)
|
||||
box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
|
||||
1])**2)
|
||||
if box_height > 2 * box_width:
|
||||
font_size = max(int(box_width * 0.9), 10)
|
||||
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
|
||||
cur_y = box[0][1]
|
||||
for c in txt:
|
||||
char_size = font.getsize(c)
|
||||
draw_right.text(
|
||||
(box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
|
||||
cur_y += char_size[1]
|
||||
else:
|
||||
font_size = max(int(box_height * 0.8), 10)
|
||||
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
|
||||
draw_right.text(
|
||||
[box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
|
||||
img_left = Image.blend(image, img_left, 0.5)
|
||||
img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
|
||||
img_show.paste(img_left, (0, 0, w, h))
|
||||
img_show.paste(img_right, (w, 0, w * 2, h))
|
||||
return np.array(img_show)
|
||||
|
||||
|
||||
def str_count(s):
|
||||
"""
|
||||
Count the number of Chinese characters,
|
||||
a single English character and a single number
|
||||
equal to half the length of Chinese characters.
|
||||
args:
|
||||
s(string): the input of string
|
||||
return(int):
|
||||
the number of Chinese characters
|
||||
"""
|
||||
import string
|
||||
count_zh = count_pu = 0
|
||||
s_len = len(s)
|
||||
en_dg_count = 0
|
||||
for c in s:
|
||||
if c in string.ascii_letters or c.isdigit() or c.isspace():
|
||||
en_dg_count += 1
|
||||
elif c.isalpha():
|
||||
count_zh += 1
|
||||
else:
|
||||
count_pu += 1
|
||||
return s_len - math.ceil(en_dg_count / 2)
|
||||
|
||||
|
||||
def text_visual(texts,
|
||||
scores,
|
||||
img_h=400,
|
||||
img_w=600,
|
||||
threshold=0.,
|
||||
font_path="./doc/simfang.ttf"):
|
||||
"""
|
||||
create new blank img and draw txt on it
|
||||
args:
|
||||
texts(list): the text will be draw
|
||||
scores(list|None): corresponding score of each txt
|
||||
img_h(int): the height of blank img
|
||||
img_w(int): the width of blank img
|
||||
font_path: the path of font which is used to draw text
|
||||
return(array):
|
||||
"""
|
||||
if scores is not None:
|
||||
assert len(texts) == len(
|
||||
scores), "The number of txts and corresponding scores must match"
|
||||
|
||||
def create_blank_img():
|
||||
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
|
||||
blank_img[:, img_w - 1:] = 0
|
||||
blank_img = Image.fromarray(blank_img).convert("RGB")
|
||||
draw_txt = ImageDraw.Draw(blank_img)
|
||||
return blank_img, draw_txt
|
||||
|
||||
blank_img, draw_txt = create_blank_img()
|
||||
|
||||
font_size = 20
|
||||
txt_color = (0, 0, 0)
|
||||
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
|
||||
|
||||
gap = font_size + 5
|
||||
txt_img_list = []
|
||||
count, index = 1, 0
|
||||
for idx, txt in enumerate(texts):
|
||||
index += 1
|
||||
if scores[idx] < threshold or math.isnan(scores[idx]):
|
||||
index -= 1
|
||||
continue
|
||||
first_line = True
|
||||
while str_count(txt) >= img_w // font_size - 4:
|
||||
tmp = txt
|
||||
txt = tmp[:img_w // font_size - 4]
|
||||
if first_line:
|
||||
new_txt = str(index) + ': ' + txt
|
||||
first_line = False
|
||||
else:
|
||||
new_txt = ' ' + txt
|
||||
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
|
||||
txt = tmp[img_w // font_size - 4:]
|
||||
if count >= img_h // gap - 1:
|
||||
txt_img_list.append(np.array(blank_img))
|
||||
blank_img, draw_txt = create_blank_img()
|
||||
count = 0
|
||||
count += 1
|
||||
if first_line:
|
||||
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
|
||||
else:
|
||||
new_txt = " " + txt + " " + '%.3f' % (scores[idx])
|
||||
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
|
||||
# whether add new blank img or not
|
||||
if count >= img_h // gap - 1 and idx + 1 < len(texts):
|
||||
txt_img_list.append(np.array(blank_img))
|
||||
blank_img, draw_txt = create_blank_img()
|
||||
count = 0
|
||||
count += 1
|
||||
txt_img_list.append(np.array(blank_img))
|
||||
if len(txt_img_list) == 1:
|
||||
blank_img = np.array(txt_img_list[0])
|
||||
else:
|
||||
blank_img = np.concatenate(txt_img_list, axis=1)
|
||||
return np.array(blank_img)
|
||||
|
||||
|
||||
def base64_to_cv2(b64str):
|
||||
import base64
|
||||
data = base64.b64decode(b64str.encode('utf8'))
|
||||
data = np.fromstring(data, np.uint8)
|
||||
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||
return data
|
||||
|
||||
|
||||
def draw_boxes(image, boxes, scores=None, drop_score=0.5):
|
||||
if scores is None:
|
||||
scores = [1] * len(boxes)
|
||||
for (box, score) in zip(boxes, scores):
|
||||
if score < drop_score:
|
||||
continue
|
||||
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
|
||||
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
|
||||
return image
|
||||
|
||||
|
||||
def get_rotate_crop_image(img, points):
|
||||
'''
|
||||
img_height, img_width = img.shape[0:2]
|
||||
left = int(np.min(points[:, 0]))
|
||||
right = int(np.max(points[:, 0]))
|
||||
top = int(np.min(points[:, 1]))
|
||||
bottom = int(np.max(points[:, 1]))
|
||||
img_crop = img[top:bottom, left:right, :].copy()
|
||||
points[:, 0] = points[:, 0] - left
|
||||
points[:, 1] = points[:, 1] - top
|
||||
'''
|
||||
assert len(points) == 4, "shape of points must be 4*2"
|
||||
img_crop_width = int(
|
||||
max(
|
||||
np.linalg.norm(points[0] - points[1]),
|
||||
np.linalg.norm(points[2] - points[3])))
|
||||
img_crop_height = int(
|
||||
max(
|
||||
np.linalg.norm(points[0] - points[3]),
|
||||
np.linalg.norm(points[1] - points[2])))
|
||||
pts_std = np.float32([[0, 0], [img_crop_width, 0],
|
||||
[img_crop_width, img_crop_height],
|
||||
[0, img_crop_height]])
|
||||
M = cv2.getPerspectiveTransform(points, pts_std)
|
||||
dst_img = cv2.warpPerspective(
|
||||
img,
|
||||
M, (img_crop_width, img_crop_height),
|
||||
borderMode=cv2.BORDER_REPLICATE,
|
||||
flags=cv2.INTER_CUBIC)
|
||||
dst_img_height, dst_img_width = dst_img.shape[0:2]
|
||||
if dst_img_height * 1.0 / dst_img_width >= 1.5:
|
||||
dst_img = np.rot90(dst_img)
|
||||
return dst_img
|
||||
|
||||
|
||||
def check_gpu(use_gpu):
|
||||
if use_gpu and not paddle.is_compiled_with_cuda():
|
||||
use_gpu = False
|
||||
return use_gpu
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pass
|
||||
Reference in New Issue
Block a user