更换文档检测模型
This commit is contained in:
304
paddle_detection/deploy/pptracking/cpp/src/tracker.cc
Normal file
304
paddle_detection/deploy/pptracking/cpp/src/tracker.cc
Normal file
@@ -0,0 +1,304 @@
|
||||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// The code is based on:
|
||||
// https://github.com/CnybTseng/JDE/blob/master/platforms/common/jdetracker.cpp
|
||||
// Ths copyright of CnybTseng/JDE is as follows:
|
||||
// MIT License
|
||||
|
||||
#include <limits.h>
|
||||
#include <stdio.h>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
|
||||
#include "include/lapjv.h"
|
||||
#include "include/tracker.h"
|
||||
|
||||
#define mat2vec4f(m) \
|
||||
cv::Vec4f(*m.ptr<float>(0, 0), \
|
||||
*m.ptr<float>(0, 1), \
|
||||
*m.ptr<float>(0, 2), \
|
||||
*m.ptr<float>(0, 3))
|
||||
|
||||
namespace PaddleDetection {
|
||||
|
||||
static std::map<int, float> chi2inv95 = {{1, 3.841459f},
|
||||
{2, 5.991465f},
|
||||
{3, 7.814728f},
|
||||
{4, 9.487729f},
|
||||
{5, 11.070498f},
|
||||
{6, 12.591587f},
|
||||
{7, 14.067140f},
|
||||
{8, 15.507313f},
|
||||
{9, 16.918978f}};
|
||||
|
||||
JDETracker *JDETracker::me = new JDETracker;
|
||||
|
||||
JDETracker *JDETracker::instance(void) { return me; }
|
||||
|
||||
JDETracker::JDETracker(void)
|
||||
: timestamp(0), max_lost_time(30), lambda(0.98f), det_thresh(0.3f) {}
|
||||
|
||||
bool JDETracker::update(const cv::Mat &dets,
|
||||
const cv::Mat &emb,
|
||||
std::vector<Track> *tracks) {
|
||||
++timestamp;
|
||||
TrajectoryPool candidates(dets.rows);
|
||||
for (int i = 0; i < dets.rows; ++i) {
|
||||
float score = *dets.ptr<float>(i, 1);
|
||||
const cv::Mat <rb_ = dets(cv::Rect(2, i, 4, 1));
|
||||
cv::Vec4f ltrb = mat2vec4f(ltrb_);
|
||||
const cv::Mat &embedding = emb(cv::Rect(0, i, emb.cols, 1));
|
||||
candidates[i] = Trajectory(ltrb, score, embedding);
|
||||
}
|
||||
|
||||
TrajectoryPtrPool tracked_trajectories;
|
||||
TrajectoryPtrPool unconfirmed_trajectories;
|
||||
for (size_t i = 0; i < this->tracked_trajectories.size(); ++i) {
|
||||
if (this->tracked_trajectories[i].is_activated)
|
||||
tracked_trajectories.push_back(&this->tracked_trajectories[i]);
|
||||
else
|
||||
unconfirmed_trajectories.push_back(&this->tracked_trajectories[i]);
|
||||
}
|
||||
|
||||
TrajectoryPtrPool trajectory_pool =
|
||||
tracked_trajectories + &(this->lost_trajectories);
|
||||
|
||||
for (size_t i = 0; i < trajectory_pool.size(); ++i)
|
||||
trajectory_pool[i]->predict();
|
||||
|
||||
Match matches;
|
||||
std::vector<int> mismatch_row;
|
||||
std::vector<int> mismatch_col;
|
||||
|
||||
cv::Mat cost = motion_distance(trajectory_pool, candidates);
|
||||
linear_assignment(cost, 0.7f, &matches, &mismatch_row, &mismatch_col);
|
||||
|
||||
MatchIterator miter;
|
||||
TrajectoryPtrPool activated_trajectories;
|
||||
TrajectoryPtrPool retrieved_trajectories;
|
||||
|
||||
for (miter = matches.begin(); miter != matches.end(); miter++) {
|
||||
Trajectory *pt = trajectory_pool[miter->first];
|
||||
Trajectory &ct = candidates[miter->second];
|
||||
if (pt->state == Tracked) {
|
||||
pt->update(&ct, timestamp);
|
||||
activated_trajectories.push_back(pt);
|
||||
} else {
|
||||
pt->reactivate(&ct, timestamp);
|
||||
retrieved_trajectories.push_back(pt);
|
||||
}
|
||||
}
|
||||
|
||||
TrajectoryPtrPool next_candidates(mismatch_col.size());
|
||||
for (size_t i = 0; i < mismatch_col.size(); ++i)
|
||||
next_candidates[i] = &candidates[mismatch_col[i]];
|
||||
|
||||
TrajectoryPtrPool next_trajectory_pool;
|
||||
for (size_t i = 0; i < mismatch_row.size(); ++i) {
|
||||
int j = mismatch_row[i];
|
||||
if (trajectory_pool[j]->state == Tracked)
|
||||
next_trajectory_pool.push_back(trajectory_pool[j]);
|
||||
}
|
||||
|
||||
cost = iou_distance(next_trajectory_pool, next_candidates);
|
||||
linear_assignment(cost, 0.5f, &matches, &mismatch_row, &mismatch_col);
|
||||
|
||||
for (miter = matches.begin(); miter != matches.end(); miter++) {
|
||||
Trajectory *pt = next_trajectory_pool[miter->first];
|
||||
Trajectory *ct = next_candidates[miter->second];
|
||||
if (pt->state == Tracked) {
|
||||
pt->update(ct, timestamp);
|
||||
activated_trajectories.push_back(pt);
|
||||
} else {
|
||||
pt->reactivate(ct, timestamp);
|
||||
retrieved_trajectories.push_back(pt);
|
||||
}
|
||||
}
|
||||
|
||||
TrajectoryPtrPool lost_trajectories;
|
||||
for (size_t i = 0; i < mismatch_row.size(); ++i) {
|
||||
Trajectory *pt = next_trajectory_pool[mismatch_row[i]];
|
||||
if (pt->state != Lost) {
|
||||
pt->mark_lost();
|
||||
lost_trajectories.push_back(pt);
|
||||
}
|
||||
}
|
||||
|
||||
TrajectoryPtrPool nnext_candidates(mismatch_col.size());
|
||||
for (size_t i = 0; i < mismatch_col.size(); ++i)
|
||||
nnext_candidates[i] = next_candidates[mismatch_col[i]];
|
||||
cost = iou_distance(unconfirmed_trajectories, nnext_candidates);
|
||||
linear_assignment(cost, 0.7f, &matches, &mismatch_row, &mismatch_col);
|
||||
|
||||
for (miter = matches.begin(); miter != matches.end(); miter++) {
|
||||
unconfirmed_trajectories[miter->first]->update(
|
||||
nnext_candidates[miter->second], timestamp);
|
||||
activated_trajectories.push_back(unconfirmed_trajectories[miter->first]);
|
||||
}
|
||||
|
||||
TrajectoryPtrPool removed_trajectories;
|
||||
|
||||
for (size_t i = 0; i < mismatch_row.size(); ++i) {
|
||||
unconfirmed_trajectories[mismatch_row[i]]->mark_removed();
|
||||
removed_trajectories.push_back(unconfirmed_trajectories[mismatch_row[i]]);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < mismatch_col.size(); ++i) {
|
||||
if (nnext_candidates[mismatch_col[i]]->score < det_thresh) continue;
|
||||
nnext_candidates[mismatch_col[i]]->activate(timestamp);
|
||||
activated_trajectories.push_back(nnext_candidates[mismatch_col[i]]);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < this->lost_trajectories.size(); ++i) {
|
||||
Trajectory < = this->lost_trajectories[i];
|
||||
if (timestamp - lt.timestamp > max_lost_time) {
|
||||
lt.mark_removed();
|
||||
removed_trajectories.push_back(<);
|
||||
}
|
||||
}
|
||||
|
||||
TrajectoryPoolIterator piter;
|
||||
for (piter = this->tracked_trajectories.begin();
|
||||
piter != this->tracked_trajectories.end();) {
|
||||
if (piter->state != Tracked)
|
||||
piter = this->tracked_trajectories.erase(piter);
|
||||
else
|
||||
++piter;
|
||||
}
|
||||
|
||||
this->tracked_trajectories += activated_trajectories;
|
||||
this->tracked_trajectories += retrieved_trajectories;
|
||||
|
||||
this->lost_trajectories -= this->tracked_trajectories;
|
||||
this->lost_trajectories += lost_trajectories;
|
||||
this->lost_trajectories -= this->removed_trajectories;
|
||||
this->removed_trajectories += removed_trajectories;
|
||||
remove_duplicate_trajectory(&this->tracked_trajectories,
|
||||
&this->lost_trajectories);
|
||||
|
||||
tracks->clear();
|
||||
for (size_t i = 0; i < this->tracked_trajectories.size(); ++i) {
|
||||
if (this->tracked_trajectories[i].is_activated) {
|
||||
Track track = {this->tracked_trajectories[i].id,
|
||||
this->tracked_trajectories[i].score,
|
||||
this->tracked_trajectories[i].ltrb};
|
||||
tracks->push_back(track);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
cv::Mat JDETracker::motion_distance(const TrajectoryPtrPool &a,
|
||||
const TrajectoryPool &b) {
|
||||
if (0 == a.size() || 0 == b.size())
|
||||
return cv::Mat(a.size(), b.size(), CV_32F);
|
||||
|
||||
cv::Mat edists = embedding_distance(a, b);
|
||||
cv::Mat mdists = mahalanobis_distance(a, b);
|
||||
cv::Mat fdists = lambda * edists + (1 - lambda) * mdists;
|
||||
|
||||
const float gate_thresh = chi2inv95[4];
|
||||
for (int i = 0; i < fdists.rows; ++i) {
|
||||
for (int j = 0; j < fdists.cols; ++j) {
|
||||
if (*mdists.ptr<float>(i, j) > gate_thresh)
|
||||
*fdists.ptr<float>(i, j) = FLT_MAX;
|
||||
}
|
||||
}
|
||||
|
||||
return fdists;
|
||||
}
|
||||
|
||||
void JDETracker::linear_assignment(const cv::Mat &cost,
|
||||
float cost_limit,
|
||||
Match *matches,
|
||||
std::vector<int> *mismatch_row,
|
||||
std::vector<int> *mismatch_col) {
|
||||
matches->clear();
|
||||
mismatch_row->clear();
|
||||
mismatch_col->clear();
|
||||
if (cost.empty()) {
|
||||
for (int i = 0; i < cost.rows; ++i) mismatch_row->push_back(i);
|
||||
for (int i = 0; i < cost.cols; ++i) mismatch_col->push_back(i);
|
||||
return;
|
||||
}
|
||||
|
||||
float opt = 0;
|
||||
cv::Mat x(cost.rows, 1, CV_32S);
|
||||
cv::Mat y(cost.cols, 1, CV_32S);
|
||||
|
||||
lapjv_internal(cost,
|
||||
true,
|
||||
cost_limit,
|
||||
reinterpret_cast<int *>(x.data),
|
||||
reinterpret_cast<int *>(y.data));
|
||||
|
||||
for (int i = 0; i < x.rows; ++i) {
|
||||
int j = *x.ptr<int>(i);
|
||||
if (j >= 0)
|
||||
matches->insert({i, j});
|
||||
else
|
||||
mismatch_row->push_back(i);
|
||||
}
|
||||
|
||||
for (int i = 0; i < y.rows; ++i) {
|
||||
int j = *y.ptr<int>(i);
|
||||
if (j < 0) mismatch_col->push_back(i);
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void JDETracker::remove_duplicate_trajectory(TrajectoryPool *a,
|
||||
TrajectoryPool *b,
|
||||
float iou_thresh) {
|
||||
if (a->size() == 0 || b->size() == 0) return;
|
||||
|
||||
cv::Mat dist = iou_distance(*a, *b);
|
||||
cv::Mat mask = dist < iou_thresh;
|
||||
std::vector<cv::Point> idx;
|
||||
cv::findNonZero(mask, idx);
|
||||
|
||||
std::vector<int> da;
|
||||
std::vector<int> db;
|
||||
for (size_t i = 0; i < idx.size(); ++i) {
|
||||
int ta = (*a)[idx[i].y].timestamp - (*a)[idx[i].y].starttime;
|
||||
int tb = (*b)[idx[i].x].timestamp - (*b)[idx[i].x].starttime;
|
||||
if (ta > tb)
|
||||
db.push_back(idx[i].x);
|
||||
else
|
||||
da.push_back(idx[i].y);
|
||||
}
|
||||
|
||||
int id = 0;
|
||||
TrajectoryPoolIterator piter;
|
||||
for (piter = a->begin(); piter != a->end();) {
|
||||
std::vector<int>::iterator iter = find(da.begin(), da.end(), id++);
|
||||
if (iter != da.end())
|
||||
piter = a->erase(piter);
|
||||
else
|
||||
++piter;
|
||||
}
|
||||
|
||||
id = 0;
|
||||
for (piter = b->begin(); piter != b->end();) {
|
||||
std::vector<int>::iterator iter = find(db.begin(), db.end(), id++);
|
||||
if (iter != db.end())
|
||||
piter = b->erase(piter);
|
||||
else
|
||||
++piter;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace PaddleDetection
|
||||
Reference in New Issue
Block a user