更换文档检测模型
This commit is contained in:
369
paddle_detection/deploy/python/keypoint_postprocess.py
Normal file
369
paddle_detection/deploy/python/keypoint_postprocess.py
Normal file
@@ -0,0 +1,369 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from scipy.optimize import linear_sum_assignment
|
||||
from collections import abc, defaultdict
|
||||
import cv2
|
||||
import numpy as np
|
||||
import math
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
from keypoint_preprocess import get_affine_mat_kernel, get_affine_transform
|
||||
|
||||
|
||||
class HrHRNetPostProcess(object):
|
||||
"""
|
||||
HrHRNet postprocess contain:
|
||||
1) get topk keypoints in the output heatmap
|
||||
2) sample the tagmap's value corresponding to each of the topk coordinate
|
||||
3) match different joints to combine to some people with Hungary algorithm
|
||||
4) adjust the coordinate by +-0.25 to decrease error std
|
||||
5) salvage missing joints by check positivity of heatmap - tagdiff_norm
|
||||
Args:
|
||||
max_num_people (int): max number of people support in postprocess
|
||||
heat_thresh (float): value of topk below this threshhold will be ignored
|
||||
tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init
|
||||
|
||||
inputs(list[heatmap]): the output list of model, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk
|
||||
original_height, original_width (float): the original image size
|
||||
"""
|
||||
|
||||
def __init__(self, max_num_people=30, heat_thresh=0.2, tag_thresh=1.):
|
||||
self.max_num_people = max_num_people
|
||||
self.heat_thresh = heat_thresh
|
||||
self.tag_thresh = tag_thresh
|
||||
|
||||
def lerp(self, j, y, x, heatmap):
|
||||
H, W = heatmap.shape[-2:]
|
||||
left = np.clip(x - 1, 0, W - 1)
|
||||
right = np.clip(x + 1, 0, W - 1)
|
||||
up = np.clip(y - 1, 0, H - 1)
|
||||
down = np.clip(y + 1, 0, H - 1)
|
||||
offset_y = np.where(heatmap[j, down, x] > heatmap[j, up, x], 0.25,
|
||||
-0.25)
|
||||
offset_x = np.where(heatmap[j, y, right] > heatmap[j, y, left], 0.25,
|
||||
-0.25)
|
||||
return offset_y + 0.5, offset_x + 0.5
|
||||
|
||||
def __call__(self, heatmap, tagmap, heat_k, inds_k, original_height,
|
||||
original_width):
|
||||
|
||||
N, J, H, W = heatmap.shape
|
||||
assert N == 1, "only support batch size 1"
|
||||
heatmap = heatmap[0]
|
||||
tagmap = tagmap[0]
|
||||
heats = heat_k[0]
|
||||
inds_np = inds_k[0]
|
||||
y = inds_np // W
|
||||
x = inds_np % W
|
||||
tags = tagmap[np.arange(J)[None, :].repeat(self.max_num_people),
|
||||
y.flatten(), x.flatten()].reshape(J, -1, tagmap.shape[-1])
|
||||
coords = np.stack((y, x), axis=2)
|
||||
# threshold
|
||||
mask = heats > self.heat_thresh
|
||||
# cluster
|
||||
cluster = defaultdict(lambda: {
|
||||
'coords': np.zeros((J, 2), dtype=np.float32),
|
||||
'scores': np.zeros(J, dtype=np.float32),
|
||||
'tags': []
|
||||
})
|
||||
for jid, m in enumerate(mask):
|
||||
num_valid = m.sum()
|
||||
if num_valid == 0:
|
||||
continue
|
||||
valid_inds = np.where(m)[0]
|
||||
valid_tags = tags[jid, m, :]
|
||||
if len(cluster) == 0: # initialize
|
||||
for i in valid_inds:
|
||||
tag = tags[jid, i]
|
||||
key = tag[0]
|
||||
cluster[key]['tags'].append(tag)
|
||||
cluster[key]['scores'][jid] = heats[jid, i]
|
||||
cluster[key]['coords'][jid] = coords[jid, i]
|
||||
continue
|
||||
candidates = list(cluster.keys())[:self.max_num_people]
|
||||
centroids = [
|
||||
np.mean(
|
||||
cluster[k]['tags'], axis=0) for k in candidates
|
||||
]
|
||||
num_clusters = len(centroids)
|
||||
# shape is (num_valid, num_clusters, tag_dim)
|
||||
dist = valid_tags[:, None, :] - np.array(centroids)[None, ...]
|
||||
l2_dist = np.linalg.norm(dist, ord=2, axis=2)
|
||||
# modulate dist with heat value, see `use_detection_val`
|
||||
cost = np.round(l2_dist) * 100 - heats[jid, m, None]
|
||||
# pad the cost matrix, otherwise new pose are ignored
|
||||
if num_valid > num_clusters:
|
||||
cost = np.pad(cost, ((0, 0), (0, num_valid - num_clusters)),
|
||||
'constant',
|
||||
constant_values=((0, 0), (0, 1e-10)))
|
||||
rows, cols = linear_sum_assignment(cost)
|
||||
for y, x in zip(rows, cols):
|
||||
tag = tags[jid, y]
|
||||
if y < num_valid and x < num_clusters and \
|
||||
l2_dist[y, x] < self.tag_thresh:
|
||||
key = candidates[x] # merge to cluster
|
||||
else:
|
||||
key = tag[0] # initialize new cluster
|
||||
cluster[key]['tags'].append(tag)
|
||||
cluster[key]['scores'][jid] = heats[jid, y]
|
||||
cluster[key]['coords'][jid] = coords[jid, y]
|
||||
|
||||
# shape is [k, J, 2] and [k, J]
|
||||
pose_tags = np.array([cluster[k]['tags'] for k in cluster])
|
||||
pose_coords = np.array([cluster[k]['coords'] for k in cluster])
|
||||
pose_scores = np.array([cluster[k]['scores'] for k in cluster])
|
||||
valid = pose_scores > 0
|
||||
|
||||
pose_kpts = np.zeros((pose_scores.shape[0], J, 3), dtype=np.float32)
|
||||
if valid.sum() == 0:
|
||||
return pose_kpts, pose_kpts
|
||||
|
||||
# refine coords
|
||||
valid_coords = pose_coords[valid].astype(np.int32)
|
||||
y = valid_coords[..., 0].flatten()
|
||||
x = valid_coords[..., 1].flatten()
|
||||
_, j = np.nonzero(valid)
|
||||
offsets = self.lerp(j, y, x, heatmap)
|
||||
pose_coords[valid, 0] += offsets[0]
|
||||
pose_coords[valid, 1] += offsets[1]
|
||||
|
||||
# mean score before salvage
|
||||
mean_score = pose_scores.mean(axis=1)
|
||||
pose_kpts[valid, 2] = pose_scores[valid]
|
||||
|
||||
# salvage missing joints
|
||||
if True:
|
||||
for pid, coords in enumerate(pose_coords):
|
||||
tag_mean = np.array(pose_tags[pid]).mean(axis=0)
|
||||
norm = np.sum((tagmap - tag_mean)**2, axis=3)**0.5
|
||||
score = heatmap - np.round(norm) # (J, H, W)
|
||||
flat_score = score.reshape(J, -1)
|
||||
max_inds = np.argmax(flat_score, axis=1)
|
||||
max_scores = np.max(flat_score, axis=1)
|
||||
salvage_joints = (pose_scores[pid] == 0) & (max_scores > 0)
|
||||
if salvage_joints.sum() == 0:
|
||||
continue
|
||||
y = max_inds[salvage_joints] // W
|
||||
x = max_inds[salvage_joints] % W
|
||||
offsets = self.lerp(salvage_joints.nonzero()[0], y, x, heatmap)
|
||||
y = y.astype(np.float32) + offsets[0]
|
||||
x = x.astype(np.float32) + offsets[1]
|
||||
pose_coords[pid][salvage_joints, 0] = y
|
||||
pose_coords[pid][salvage_joints, 1] = x
|
||||
pose_kpts[pid][salvage_joints, 2] = max_scores[salvage_joints]
|
||||
pose_kpts[..., :2] = transpred(pose_coords[..., :2][..., ::-1],
|
||||
original_height, original_width,
|
||||
min(H, W))
|
||||
return pose_kpts, mean_score
|
||||
|
||||
|
||||
def transpred(kpts, h, w, s):
|
||||
trans, _ = get_affine_mat_kernel(h, w, s, inv=True)
|
||||
|
||||
return warp_affine_joints(kpts[..., :2].copy(), trans)
|
||||
|
||||
|
||||
def warp_affine_joints(joints, mat):
|
||||
"""Apply affine transformation defined by the transform matrix on the
|
||||
joints.
|
||||
|
||||
Args:
|
||||
joints (np.ndarray[..., 2]): Origin coordinate of joints.
|
||||
mat (np.ndarray[3, 2]): The affine matrix.
|
||||
|
||||
Returns:
|
||||
matrix (np.ndarray[..., 2]): Result coordinate of joints.
|
||||
"""
|
||||
joints = np.array(joints)
|
||||
shape = joints.shape
|
||||
joints = joints.reshape(-1, 2)
|
||||
return np.dot(np.concatenate(
|
||||
(joints, joints[:, 0:1] * 0 + 1), axis=1),
|
||||
mat.T).reshape(shape)
|
||||
|
||||
|
||||
class HRNetPostProcess(object):
|
||||
def __init__(self, use_dark=True):
|
||||
self.use_dark = use_dark
|
||||
|
||||
def flip_back(self, output_flipped, matched_parts):
|
||||
assert output_flipped.ndim == 4,\
|
||||
'output_flipped should be [batch_size, num_joints, height, width]'
|
||||
|
||||
output_flipped = output_flipped[:, :, :, ::-1]
|
||||
|
||||
for pair in matched_parts:
|
||||
tmp = output_flipped[:, pair[0], :, :].copy()
|
||||
output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
|
||||
output_flipped[:, pair[1], :, :] = tmp
|
||||
|
||||
return output_flipped
|
||||
|
||||
def get_max_preds(self, heatmaps):
|
||||
"""get predictions from score maps
|
||||
|
||||
Args:
|
||||
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
|
||||
|
||||
Returns:
|
||||
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
|
||||
maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
|
||||
"""
|
||||
assert isinstance(heatmaps,
|
||||
np.ndarray), 'heatmaps should be numpy.ndarray'
|
||||
assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'
|
||||
|
||||
batch_size = heatmaps.shape[0]
|
||||
num_joints = heatmaps.shape[1]
|
||||
width = heatmaps.shape[3]
|
||||
heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
|
||||
idx = np.argmax(heatmaps_reshaped, 2)
|
||||
maxvals = np.amax(heatmaps_reshaped, 2)
|
||||
|
||||
maxvals = maxvals.reshape((batch_size, num_joints, 1))
|
||||
idx = idx.reshape((batch_size, num_joints, 1))
|
||||
|
||||
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
|
||||
|
||||
preds[:, :, 0] = (preds[:, :, 0]) % width
|
||||
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
|
||||
|
||||
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
|
||||
pred_mask = pred_mask.astype(np.float32)
|
||||
|
||||
preds *= pred_mask
|
||||
|
||||
return preds, maxvals
|
||||
|
||||
def gaussian_blur(self, heatmap, kernel):
|
||||
border = (kernel - 1) // 2
|
||||
batch_size = heatmap.shape[0]
|
||||
num_joints = heatmap.shape[1]
|
||||
height = heatmap.shape[2]
|
||||
width = heatmap.shape[3]
|
||||
for i in range(batch_size):
|
||||
for j in range(num_joints):
|
||||
origin_max = np.max(heatmap[i, j])
|
||||
dr = np.zeros((height + 2 * border, width + 2 * border))
|
||||
dr[border:-border, border:-border] = heatmap[i, j].copy()
|
||||
dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
|
||||
heatmap[i, j] = dr[border:-border, border:-border].copy()
|
||||
heatmap[i, j] *= origin_max / np.max(heatmap[i, j])
|
||||
return heatmap
|
||||
|
||||
def dark_parse(self, hm, coord):
|
||||
heatmap_height = hm.shape[0]
|
||||
heatmap_width = hm.shape[1]
|
||||
px = int(coord[0])
|
||||
py = int(coord[1])
|
||||
if 1 < px < heatmap_width - 2 and 1 < py < heatmap_height - 2:
|
||||
dx = 0.5 * (hm[py][px + 1] - hm[py][px - 1])
|
||||
dy = 0.5 * (hm[py + 1][px] - hm[py - 1][px])
|
||||
dxx = 0.25 * (hm[py][px + 2] - 2 * hm[py][px] + hm[py][px - 2])
|
||||
dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1] \
|
||||
+ hm[py-1][px-1])
|
||||
dyy = 0.25 * (
|
||||
hm[py + 2 * 1][px] - 2 * hm[py][px] + hm[py - 2 * 1][px])
|
||||
derivative = np.matrix([[dx], [dy]])
|
||||
hessian = np.matrix([[dxx, dxy], [dxy, dyy]])
|
||||
if dxx * dyy - dxy**2 != 0:
|
||||
hessianinv = hessian.I
|
||||
offset = -hessianinv * derivative
|
||||
offset = np.squeeze(np.array(offset.T), axis=0)
|
||||
coord += offset
|
||||
return coord
|
||||
|
||||
def dark_postprocess(self, hm, coords, kernelsize):
|
||||
"""
|
||||
refer to https://github.com/ilovepose/DarkPose/lib/core/inference.py
|
||||
|
||||
"""
|
||||
hm = self.gaussian_blur(hm, kernelsize)
|
||||
hm = np.maximum(hm, 1e-10)
|
||||
hm = np.log(hm)
|
||||
for n in range(coords.shape[0]):
|
||||
for p in range(coords.shape[1]):
|
||||
coords[n, p] = self.dark_parse(hm[n][p], coords[n][p])
|
||||
return coords
|
||||
|
||||
def get_final_preds(self, heatmaps, center, scale, kernelsize=3):
|
||||
"""the highest heatvalue location with a quarter offset in the
|
||||
direction from the highest response to the second highest response.
|
||||
|
||||
Args:
|
||||
heatmaps (numpy.ndarray): The predicted heatmaps
|
||||
center (numpy.ndarray): The boxes center
|
||||
scale (numpy.ndarray): The scale factor
|
||||
|
||||
Returns:
|
||||
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
|
||||
maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
|
||||
"""
|
||||
|
||||
coords, maxvals = self.get_max_preds(heatmaps)
|
||||
|
||||
heatmap_height = heatmaps.shape[2]
|
||||
heatmap_width = heatmaps.shape[3]
|
||||
|
||||
if self.use_dark:
|
||||
coords = self.dark_postprocess(heatmaps, coords, kernelsize)
|
||||
else:
|
||||
for n in range(coords.shape[0]):
|
||||
for p in range(coords.shape[1]):
|
||||
hm = heatmaps[n][p]
|
||||
px = int(math.floor(coords[n][p][0] + 0.5))
|
||||
py = int(math.floor(coords[n][p][1] + 0.5))
|
||||
if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
|
||||
diff = np.array([
|
||||
hm[py][px + 1] - hm[py][px - 1],
|
||||
hm[py + 1][px] - hm[py - 1][px]
|
||||
])
|
||||
coords[n][p] += np.sign(diff) * .25
|
||||
preds = coords.copy()
|
||||
|
||||
# Transform back
|
||||
for i in range(coords.shape[0]):
|
||||
preds[i] = transform_preds(coords[i], center[i], scale[i],
|
||||
[heatmap_width, heatmap_height])
|
||||
|
||||
return preds, maxvals
|
||||
|
||||
def __call__(self, output, center, scale):
|
||||
preds, maxvals = self.get_final_preds(output, center, scale)
|
||||
return np.concatenate(
|
||||
(preds, maxvals), axis=-1), np.mean(
|
||||
maxvals, axis=1)
|
||||
|
||||
|
||||
def transform_preds(coords, center, scale, output_size):
|
||||
target_coords = np.zeros(coords.shape)
|
||||
trans = get_affine_transform(center, scale * 200, 0, output_size, inv=1)
|
||||
for p in range(coords.shape[0]):
|
||||
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
|
||||
return target_coords
|
||||
|
||||
|
||||
def affine_transform(pt, t):
|
||||
new_pt = np.array([pt[0], pt[1], 1.]).T
|
||||
new_pt = np.dot(t, new_pt)
|
||||
return new_pt[:2]
|
||||
|
||||
|
||||
def translate_to_ori_images(keypoint_result, batch_records):
|
||||
kpts = keypoint_result['keypoint']
|
||||
scores = keypoint_result['score']
|
||||
kpts[..., 0] += batch_records[:, 0:1]
|
||||
kpts[..., 1] += batch_records[:, 1:2]
|
||||
return kpts, scores
|
||||
Reference in New Issue
Block a user