更换文档检测模型
This commit is contained in:
545
paddle_detection/deploy/python/utils.py
Normal file
545
paddle_detection/deploy/python/utils.py
Normal file
@@ -0,0 +1,545 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import time
|
||||
import os
|
||||
import ast
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
|
||||
def argsparser():
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument(
|
||||
"--model_dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help=("Directory include:'model.pdiparams', 'model.pdmodel', "
|
||||
"'infer_cfg.yml', created by tools/export_model.py."),
|
||||
required=True)
|
||||
parser.add_argument(
|
||||
"--image_file", type=str, default=None, help="Path of image file.")
|
||||
parser.add_argument(
|
||||
"--image_dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Dir of image file, `image_file` has a higher priority.")
|
||||
parser.add_argument(
|
||||
"--batch_size", type=int, default=1, help="batch_size for inference.")
|
||||
parser.add_argument(
|
||||
"--video_file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path of video file, `video_file` or `camera_id` has a highest priority."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--camera_id",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="device id of camera to predict.")
|
||||
parser.add_argument(
|
||||
"--threshold", type=float, default=0.5, help="Threshold of score.")
|
||||
parser.add_argument(
|
||||
"--output_dir",
|
||||
type=str,
|
||||
default="output",
|
||||
help="Directory of output visualization files.")
|
||||
parser.add_argument(
|
||||
"--run_mode",
|
||||
type=str,
|
||||
default='paddle',
|
||||
help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_gpu",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Deprecated, please use `--device`.")
|
||||
parser.add_argument(
|
||||
"--run_benchmark",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Whether to predict a image_file repeatedly for benchmark")
|
||||
parser.add_argument(
|
||||
"--enable_mkldnn",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Whether use mkldnn with CPU.")
|
||||
parser.add_argument(
|
||||
"--enable_mkldnn_bfloat16",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Whether use mkldnn bfloat16 inference with CPU.")
|
||||
parser.add_argument(
|
||||
"--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
|
||||
parser.add_argument(
|
||||
"--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
|
||||
parser.add_argument(
|
||||
"--trt_max_shape",
|
||||
type=int,
|
||||
default=1280,
|
||||
help="max_shape for TensorRT.")
|
||||
parser.add_argument(
|
||||
"--trt_opt_shape",
|
||||
type=int,
|
||||
default=640,
|
||||
help="opt_shape for TensorRT.")
|
||||
parser.add_argument(
|
||||
"--trt_calib_mode",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="If the model is produced by TRT offline quantitative "
|
||||
"calibration, trt_calib_mode need to set True.")
|
||||
parser.add_argument(
|
||||
'--save_images',
|
||||
type=ast.literal_eval,
|
||||
default=True,
|
||||
help='Save visualization image results.')
|
||||
parser.add_argument(
|
||||
'--save_mot_txts',
|
||||
action='store_true',
|
||||
help='Save tracking results (txt).')
|
||||
parser.add_argument(
|
||||
'--save_mot_txt_per_img',
|
||||
action='store_true',
|
||||
help='Save tracking results (txt) for each image.')
|
||||
parser.add_argument(
|
||||
'--scaled',
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Whether coords after detector outputs are scaled, False in JDE YOLOv3 "
|
||||
"True in general detector.")
|
||||
parser.add_argument(
|
||||
"--tracker_config", type=str, default=None, help=("tracker donfig"))
|
||||
parser.add_argument(
|
||||
"--reid_model_dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help=("Directory include:'model.pdiparams', 'model.pdmodel', "
|
||||
"'infer_cfg.yml', created by tools/export_model.py."))
|
||||
parser.add_argument(
|
||||
"--reid_batch_size",
|
||||
type=int,
|
||||
default=50,
|
||||
help="max batch_size for reid model inference.")
|
||||
parser.add_argument(
|
||||
'--use_dark',
|
||||
type=ast.literal_eval,
|
||||
default=True,
|
||||
help='whether to use darkpose to get better keypoint position predict ')
|
||||
parser.add_argument(
|
||||
"--action_file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path of input file for action recognition.")
|
||||
parser.add_argument(
|
||||
"--window_size",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Temporal size of skeleton feature for action recognition.")
|
||||
parser.add_argument(
|
||||
"--random_pad",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Whether do random padding for action recognition.")
|
||||
parser.add_argument(
|
||||
"--save_results",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Whether save detection result to file using coco format")
|
||||
parser.add_argument(
|
||||
'--use_coco_category',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Whether to use the coco format dictionary `clsid2catid`')
|
||||
parser.add_argument(
|
||||
"--slice_infer",
|
||||
action='store_true',
|
||||
help="Whether to slice the image and merge the inference results for small object detection."
|
||||
)
|
||||
parser.add_argument(
|
||||
'--slice_size',
|
||||
nargs='+',
|
||||
type=int,
|
||||
default=[640, 640],
|
||||
help="Height of the sliced image.")
|
||||
parser.add_argument(
|
||||
"--overlap_ratio",
|
||||
nargs='+',
|
||||
type=float,
|
||||
default=[0.25, 0.25],
|
||||
help="Overlap height ratio of the sliced image.")
|
||||
parser.add_argument(
|
||||
"--combine_method",
|
||||
type=str,
|
||||
default='nms',
|
||||
help="Combine method of the sliced images' detection results, choose in ['nms', 'nmm', 'concat']."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--match_threshold",
|
||||
type=float,
|
||||
default=0.6,
|
||||
help="Combine method matching threshold.")
|
||||
parser.add_argument(
|
||||
"--match_metric",
|
||||
type=str,
|
||||
default='ios',
|
||||
help="Combine method matching metric, choose in ['iou', 'ios'].")
|
||||
parser.add_argument(
|
||||
"--collect_trt_shape_info",
|
||||
action='store_true',
|
||||
default=False,
|
||||
help="Whether to collect dynamic shape before using tensorrt.")
|
||||
parser.add_argument(
|
||||
"--tuned_trt_shape_file",
|
||||
type=str,
|
||||
default="shape_range_info.pbtxt",
|
||||
help="Path of a dynamic shape file for tensorrt.")
|
||||
parser.add_argument("--use_fd_format", action="store_true")
|
||||
return parser
|
||||
|
||||
|
||||
class Times(object):
|
||||
def __init__(self):
|
||||
self.time = 0.
|
||||
# start time
|
||||
self.st = 0.
|
||||
# end time
|
||||
self.et = 0.
|
||||
|
||||
def start(self):
|
||||
self.st = time.time()
|
||||
|
||||
def end(self, repeats=1, accumulative=True):
|
||||
self.et = time.time()
|
||||
if accumulative:
|
||||
self.time += (self.et - self.st) / repeats
|
||||
else:
|
||||
self.time = (self.et - self.st) / repeats
|
||||
|
||||
def reset(self):
|
||||
self.time = 0.
|
||||
self.st = 0.
|
||||
self.et = 0.
|
||||
|
||||
def value(self):
|
||||
return round(self.time, 4)
|
||||
|
||||
|
||||
class Timer(Times):
|
||||
def __init__(self, with_tracker=False):
|
||||
super(Timer, self).__init__()
|
||||
self.with_tracker = with_tracker
|
||||
self.preprocess_time_s = Times()
|
||||
self.inference_time_s = Times()
|
||||
self.postprocess_time_s = Times()
|
||||
self.tracking_time_s = Times()
|
||||
self.img_num = 0
|
||||
|
||||
def info(self, average=False):
|
||||
pre_time = self.preprocess_time_s.value()
|
||||
infer_time = self.inference_time_s.value()
|
||||
post_time = self.postprocess_time_s.value()
|
||||
track_time = self.tracking_time_s.value()
|
||||
|
||||
total_time = pre_time + infer_time + post_time
|
||||
if self.with_tracker:
|
||||
total_time = total_time + track_time
|
||||
total_time = round(total_time, 4)
|
||||
print("------------------ Inference Time Info ----------------------")
|
||||
print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
|
||||
self.img_num))
|
||||
preprocess_time = round(pre_time / max(1, self.img_num),
|
||||
4) if average else pre_time
|
||||
postprocess_time = round(post_time / max(1, self.img_num),
|
||||
4) if average else post_time
|
||||
inference_time = round(infer_time / max(1, self.img_num),
|
||||
4) if average else infer_time
|
||||
tracking_time = round(track_time / max(1, self.img_num),
|
||||
4) if average else track_time
|
||||
|
||||
average_latency = total_time / max(1, self.img_num)
|
||||
qps = 0
|
||||
if total_time > 0:
|
||||
qps = 1 / average_latency
|
||||
print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
|
||||
average_latency * 1000, qps))
|
||||
if self.with_tracker:
|
||||
print(
|
||||
"preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}, tracking_time(ms): {:.2f}".
|
||||
format(preprocess_time * 1000, inference_time * 1000,
|
||||
postprocess_time * 1000, tracking_time * 1000))
|
||||
else:
|
||||
print(
|
||||
"preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}".
|
||||
format(preprocess_time * 1000, inference_time * 1000,
|
||||
postprocess_time * 1000))
|
||||
|
||||
def report(self, average=False):
|
||||
dic = {}
|
||||
pre_time = self.preprocess_time_s.value()
|
||||
infer_time = self.inference_time_s.value()
|
||||
post_time = self.postprocess_time_s.value()
|
||||
track_time = self.tracking_time_s.value()
|
||||
|
||||
dic['preprocess_time_s'] = round(pre_time / max(1, self.img_num),
|
||||
4) if average else pre_time
|
||||
dic['inference_time_s'] = round(infer_time / max(1, self.img_num),
|
||||
4) if average else infer_time
|
||||
dic['postprocess_time_s'] = round(post_time / max(1, self.img_num),
|
||||
4) if average else post_time
|
||||
dic['img_num'] = self.img_num
|
||||
total_time = pre_time + infer_time + post_time
|
||||
if self.with_tracker:
|
||||
dic['tracking_time_s'] = round(track_time / max(1, self.img_num),
|
||||
4) if average else track_time
|
||||
total_time = total_time + track_time
|
||||
dic['total_time_s'] = round(total_time, 4)
|
||||
return dic
|
||||
|
||||
|
||||
def get_current_memory_mb():
|
||||
"""
|
||||
It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
|
||||
And this function Current program is time-consuming.
|
||||
"""
|
||||
import pynvml
|
||||
import psutil
|
||||
import GPUtil
|
||||
gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0))
|
||||
|
||||
pid = os.getpid()
|
||||
p = psutil.Process(pid)
|
||||
info = p.memory_full_info()
|
||||
cpu_mem = info.uss / 1024. / 1024.
|
||||
gpu_mem = 0
|
||||
gpu_percent = 0
|
||||
gpus = GPUtil.getGPUs()
|
||||
if gpu_id is not None and len(gpus) > 0:
|
||||
gpu_percent = gpus[gpu_id].load
|
||||
pynvml.nvmlInit()
|
||||
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
|
||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||||
gpu_mem = meminfo.used / 1024. / 1024.
|
||||
return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)
|
||||
|
||||
|
||||
def multiclass_nms(bboxs, num_classes, match_threshold=0.6, match_metric='iou'):
|
||||
final_boxes = []
|
||||
for c in range(num_classes):
|
||||
idxs = bboxs[:, 0] == c
|
||||
if np.count_nonzero(idxs) == 0: continue
|
||||
r = nms(bboxs[idxs, 1:], match_threshold, match_metric)
|
||||
final_boxes.append(np.concatenate([np.full((r.shape[0], 1), c), r], 1))
|
||||
return final_boxes
|
||||
|
||||
|
||||
def nms(dets, match_threshold=0.6, match_metric='iou'):
|
||||
""" Apply NMS to avoid detecting too many overlapping bounding boxes.
|
||||
Args:
|
||||
dets: shape [N, 5], [score, x1, y1, x2, y2]
|
||||
match_metric: 'iou' or 'ios'
|
||||
match_threshold: overlap thresh for match metric.
|
||||
"""
|
||||
if dets.shape[0] == 0:
|
||||
return dets[[], :]
|
||||
scores = dets[:, 0]
|
||||
x1 = dets[:, 1]
|
||||
y1 = dets[:, 2]
|
||||
x2 = dets[:, 3]
|
||||
y2 = dets[:, 4]
|
||||
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
order = scores.argsort()[::-1]
|
||||
|
||||
ndets = dets.shape[0]
|
||||
suppressed = np.zeros((ndets), dtype=np.int32)
|
||||
|
||||
for _i in range(ndets):
|
||||
i = order[_i]
|
||||
if suppressed[i] == 1:
|
||||
continue
|
||||
ix1 = x1[i]
|
||||
iy1 = y1[i]
|
||||
ix2 = x2[i]
|
||||
iy2 = y2[i]
|
||||
iarea = areas[i]
|
||||
for _j in range(_i + 1, ndets):
|
||||
j = order[_j]
|
||||
if suppressed[j] == 1:
|
||||
continue
|
||||
xx1 = max(ix1, x1[j])
|
||||
yy1 = max(iy1, y1[j])
|
||||
xx2 = min(ix2, x2[j])
|
||||
yy2 = min(iy2, y2[j])
|
||||
w = max(0.0, xx2 - xx1 + 1)
|
||||
h = max(0.0, yy2 - yy1 + 1)
|
||||
inter = w * h
|
||||
if match_metric == 'iou':
|
||||
union = iarea + areas[j] - inter
|
||||
match_value = inter / union
|
||||
elif match_metric == 'ios':
|
||||
smaller = min(iarea, areas[j])
|
||||
match_value = inter / smaller
|
||||
else:
|
||||
raise ValueError()
|
||||
if match_value >= match_threshold:
|
||||
suppressed[j] = 1
|
||||
keep = np.where(suppressed == 0)[0]
|
||||
dets = dets[keep, :]
|
||||
return dets
|
||||
|
||||
|
||||
coco_clsid2catid = {
|
||||
0: 1,
|
||||
1: 2,
|
||||
2: 3,
|
||||
3: 4,
|
||||
4: 5,
|
||||
5: 6,
|
||||
6: 7,
|
||||
7: 8,
|
||||
8: 9,
|
||||
9: 10,
|
||||
10: 11,
|
||||
11: 13,
|
||||
12: 14,
|
||||
13: 15,
|
||||
14: 16,
|
||||
15: 17,
|
||||
16: 18,
|
||||
17: 19,
|
||||
18: 20,
|
||||
19: 21,
|
||||
20: 22,
|
||||
21: 23,
|
||||
22: 24,
|
||||
23: 25,
|
||||
24: 27,
|
||||
25: 28,
|
||||
26: 31,
|
||||
27: 32,
|
||||
28: 33,
|
||||
29: 34,
|
||||
30: 35,
|
||||
31: 36,
|
||||
32: 37,
|
||||
33: 38,
|
||||
34: 39,
|
||||
35: 40,
|
||||
36: 41,
|
||||
37: 42,
|
||||
38: 43,
|
||||
39: 44,
|
||||
40: 46,
|
||||
41: 47,
|
||||
42: 48,
|
||||
43: 49,
|
||||
44: 50,
|
||||
45: 51,
|
||||
46: 52,
|
||||
47: 53,
|
||||
48: 54,
|
||||
49: 55,
|
||||
50: 56,
|
||||
51: 57,
|
||||
52: 58,
|
||||
53: 59,
|
||||
54: 60,
|
||||
55: 61,
|
||||
56: 62,
|
||||
57: 63,
|
||||
58: 64,
|
||||
59: 65,
|
||||
60: 67,
|
||||
61: 70,
|
||||
62: 72,
|
||||
63: 73,
|
||||
64: 74,
|
||||
65: 75,
|
||||
66: 76,
|
||||
67: 77,
|
||||
68: 78,
|
||||
69: 79,
|
||||
70: 80,
|
||||
71: 81,
|
||||
72: 82,
|
||||
73: 84,
|
||||
74: 85,
|
||||
75: 86,
|
||||
76: 87,
|
||||
77: 88,
|
||||
78: 89,
|
||||
79: 90
|
||||
}
|
||||
|
||||
|
||||
def gaussian_radius(bbox_size, min_overlap):
|
||||
height, width = bbox_size
|
||||
|
||||
a1 = 1
|
||||
b1 = (height + width)
|
||||
c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
|
||||
sq1 = np.sqrt(b1**2 - 4 * a1 * c1)
|
||||
radius1 = (b1 + sq1) / (2 * a1)
|
||||
|
||||
a2 = 4
|
||||
b2 = 2 * (height + width)
|
||||
c2 = (1 - min_overlap) * width * height
|
||||
sq2 = np.sqrt(b2**2 - 4 * a2 * c2)
|
||||
radius2 = (b2 + sq2) / 2
|
||||
|
||||
a3 = 4 * min_overlap
|
||||
b3 = -2 * min_overlap * (height + width)
|
||||
c3 = (min_overlap - 1) * width * height
|
||||
sq3 = np.sqrt(b3**2 - 4 * a3 * c3)
|
||||
radius3 = (b3 + sq3) / 2
|
||||
return min(radius1, radius2, radius3)
|
||||
|
||||
|
||||
def gaussian2D(shape, sigma_x=1, sigma_y=1):
|
||||
m, n = [(ss - 1.) / 2. for ss in shape]
|
||||
y, x = np.ogrid[-m:m + 1, -n:n + 1]
|
||||
|
||||
h = np.exp(-(x * x / (2 * sigma_x * sigma_x) + y * y / (2 * sigma_y *
|
||||
sigma_y)))
|
||||
h[h < np.finfo(h.dtype).eps * h.max()] = 0
|
||||
return h
|
||||
|
||||
|
||||
def draw_umich_gaussian(heatmap, center, radius, k=1):
|
||||
"""
|
||||
draw_umich_gaussian, refer to https://github.com/xingyizhou/CenterNet/blob/master/src/lib/utils/image.py#L126
|
||||
"""
|
||||
diameter = 2 * radius + 1
|
||||
gaussian = gaussian2D(
|
||||
(diameter, diameter), sigma_x=diameter / 6, sigma_y=diameter / 6)
|
||||
|
||||
x, y = int(center[0]), int(center[1])
|
||||
|
||||
height, width = heatmap.shape[0:2]
|
||||
|
||||
left, right = min(x, radius), min(width - x, radius + 1)
|
||||
top, bottom = min(y, radius), min(height - y, radius + 1)
|
||||
|
||||
masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
|
||||
masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:
|
||||
radius + right]
|
||||
if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
|
||||
np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
|
||||
return heatmap
|
||||
Reference in New Issue
Block a user