更换文档检测模型
This commit is contained in:
649
paddle_detection/deploy/python/visualize.py
Normal file
649
paddle_detection/deploy/python/visualize.py
Normal file
@@ -0,0 +1,649 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import division
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import math
|
||||
import numpy as np
|
||||
import PIL
|
||||
from PIL import Image, ImageDraw, ImageFile
|
||||
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
||||
|
||||
def imagedraw_textsize_c(draw, text):
|
||||
if int(PIL.__version__.split('.')[0]) < 10:
|
||||
tw, th = draw.textsize(text)
|
||||
else:
|
||||
left, top, right, bottom = draw.textbbox((0, 0), text)
|
||||
tw, th = right - left, bottom - top
|
||||
|
||||
return tw, th
|
||||
|
||||
|
||||
def visualize_box_mask(im, results, labels, threshold=0.5):
|
||||
"""
|
||||
Args:
|
||||
im (str/np.ndarray): path of image/np.ndarray read by cv2
|
||||
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
|
||||
matix element:[class, score, x_min, y_min, x_max, y_max]
|
||||
MaskRCNN's results include 'masks': np.ndarray:
|
||||
shape:[N, im_h, im_w]
|
||||
labels (list): labels:['class1', ..., 'classn']
|
||||
threshold (float): Threshold of score.
|
||||
Returns:
|
||||
im (PIL.Image.Image): visualized image
|
||||
"""
|
||||
if isinstance(im, str):
|
||||
im = Image.open(im).convert('RGB')
|
||||
elif isinstance(im, np.ndarray):
|
||||
im = Image.fromarray(im)
|
||||
if 'masks' in results and 'boxes' in results and len(results['boxes']) > 0:
|
||||
im = draw_mask(
|
||||
im, results['boxes'], results['masks'], labels, threshold=threshold)
|
||||
if 'boxes' in results and len(results['boxes']) > 0:
|
||||
im = draw_box(im, results['boxes'], labels, threshold=threshold)
|
||||
if 'segm' in results:
|
||||
im = draw_segm(
|
||||
im,
|
||||
results['segm'],
|
||||
results['label'],
|
||||
results['score'],
|
||||
labels,
|
||||
threshold=threshold)
|
||||
return im
|
||||
|
||||
|
||||
def get_color_map_list(num_classes):
|
||||
"""
|
||||
Args:
|
||||
num_classes (int): number of class
|
||||
Returns:
|
||||
color_map (list): RGB color list
|
||||
"""
|
||||
color_map = num_classes * [0, 0, 0]
|
||||
for i in range(0, num_classes):
|
||||
j = 0
|
||||
lab = i
|
||||
while lab:
|
||||
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
|
||||
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
|
||||
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
|
||||
j += 1
|
||||
lab >>= 3
|
||||
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
|
||||
return color_map
|
||||
|
||||
|
||||
def draw_mask(im, np_boxes, np_masks, labels, threshold=0.5):
|
||||
"""
|
||||
Args:
|
||||
im (PIL.Image.Image): PIL image
|
||||
np_boxes (np.ndarray): shape:[N,6], N: number of box,
|
||||
matix element:[class, score, x_min, y_min, x_max, y_max]
|
||||
np_masks (np.ndarray): shape:[N, im_h, im_w]
|
||||
labels (list): labels:['class1', ..., 'classn']
|
||||
threshold (float): threshold of mask
|
||||
Returns:
|
||||
im (PIL.Image.Image): visualized image
|
||||
"""
|
||||
color_list = get_color_map_list(len(labels))
|
||||
w_ratio = 0.4
|
||||
alpha = 0.7
|
||||
im = np.array(im).astype('float32')
|
||||
clsid2color = {}
|
||||
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
|
||||
np_boxes = np_boxes[expect_boxes, :]
|
||||
np_masks = np_masks[expect_boxes, :, :]
|
||||
im_h, im_w = im.shape[:2]
|
||||
np_masks = np_masks[:, :im_h, :im_w]
|
||||
for i in range(len(np_masks)):
|
||||
clsid, score = int(np_boxes[i][0]), np_boxes[i][1]
|
||||
mask = np_masks[i]
|
||||
if clsid not in clsid2color:
|
||||
clsid2color[clsid] = color_list[clsid]
|
||||
color_mask = clsid2color[clsid]
|
||||
for c in range(3):
|
||||
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
|
||||
idx = np.nonzero(mask)
|
||||
color_mask = np.array(color_mask)
|
||||
im[idx[0], idx[1], :] *= 1.0 - alpha
|
||||
im[idx[0], idx[1], :] += alpha * color_mask
|
||||
return Image.fromarray(im.astype('uint8'))
|
||||
|
||||
|
||||
def draw_box(im, np_boxes, labels, threshold=0.5):
|
||||
"""
|
||||
Args:
|
||||
im (PIL.Image.Image): PIL image
|
||||
np_boxes (np.ndarray): shape:[N,6], N: number of box,
|
||||
matix element:[class, score, x_min, y_min, x_max, y_max]
|
||||
labels (list): labels:['class1', ..., 'classn']
|
||||
threshold (float): threshold of box
|
||||
Returns:
|
||||
im (PIL.Image.Image): visualized image
|
||||
"""
|
||||
draw_thickness = min(im.size) // 320
|
||||
draw = ImageDraw.Draw(im)
|
||||
clsid2color = {}
|
||||
color_list = get_color_map_list(len(labels))
|
||||
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
|
||||
np_boxes = np_boxes[expect_boxes, :]
|
||||
|
||||
for dt in np_boxes:
|
||||
clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
|
||||
if clsid not in clsid2color:
|
||||
clsid2color[clsid] = color_list[clsid]
|
||||
color = tuple(clsid2color[clsid])
|
||||
|
||||
if len(bbox) == 4:
|
||||
xmin, ymin, xmax, ymax = bbox
|
||||
print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
|
||||
'right_bottom:[{:.2f},{:.2f}]'.format(
|
||||
int(clsid), score, xmin, ymin, xmax, ymax))
|
||||
# draw bbox
|
||||
draw.line(
|
||||
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
|
||||
(xmin, ymin)],
|
||||
width=draw_thickness,
|
||||
fill=color)
|
||||
elif len(bbox) == 8:
|
||||
x1, y1, x2, y2, x3, y3, x4, y4 = bbox
|
||||
draw.line(
|
||||
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
|
||||
width=2,
|
||||
fill=color)
|
||||
xmin = min(x1, x2, x3, x4)
|
||||
ymin = min(y1, y2, y3, y4)
|
||||
|
||||
# draw label
|
||||
text = "{} {:.4f}".format(labels[clsid], score)
|
||||
tw, th = imagedraw_textsize_c(draw, text)
|
||||
draw.rectangle(
|
||||
[(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
|
||||
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
|
||||
return im
|
||||
|
||||
|
||||
def draw_segm(im,
|
||||
np_segms,
|
||||
np_label,
|
||||
np_score,
|
||||
labels,
|
||||
threshold=0.5,
|
||||
alpha=0.7):
|
||||
"""
|
||||
Draw segmentation on image
|
||||
"""
|
||||
mask_color_id = 0
|
||||
w_ratio = .4
|
||||
color_list = get_color_map_list(len(labels))
|
||||
im = np.array(im).astype('float32')
|
||||
clsid2color = {}
|
||||
np_segms = np_segms.astype(np.uint8)
|
||||
for i in range(np_segms.shape[0]):
|
||||
mask, score, clsid = np_segms[i], np_score[i], np_label[i]
|
||||
if score < threshold:
|
||||
continue
|
||||
|
||||
if clsid not in clsid2color:
|
||||
clsid2color[clsid] = color_list[clsid]
|
||||
color_mask = clsid2color[clsid]
|
||||
for c in range(3):
|
||||
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
|
||||
idx = np.nonzero(mask)
|
||||
color_mask = np.array(color_mask)
|
||||
idx0 = np.minimum(idx[0], im.shape[0] - 1)
|
||||
idx1 = np.minimum(idx[1], im.shape[1] - 1)
|
||||
im[idx0, idx1, :] *= 1.0 - alpha
|
||||
im[idx0, idx1, :] += alpha * color_mask
|
||||
sum_x = np.sum(mask, axis=0)
|
||||
x = np.where(sum_x > 0.5)[0]
|
||||
sum_y = np.sum(mask, axis=1)
|
||||
y = np.where(sum_y > 0.5)[0]
|
||||
x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
|
||||
cv2.rectangle(im, (x0, y0), (x1, y1),
|
||||
tuple(color_mask.astype('int32').tolist()), 1)
|
||||
bbox_text = '%s %.2f' % (labels[clsid], score)
|
||||
t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
|
||||
cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3),
|
||||
tuple(color_mask.astype('int32').tolist()), -1)
|
||||
cv2.putText(
|
||||
im,
|
||||
bbox_text, (x0, y0 - 2),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.3, (0, 0, 0),
|
||||
1,
|
||||
lineType=cv2.LINE_AA)
|
||||
return Image.fromarray(im.astype('uint8'))
|
||||
|
||||
|
||||
def get_color(idx):
|
||||
idx = idx * 3
|
||||
color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
|
||||
return color
|
||||
|
||||
|
||||
def visualize_pose(imgfile,
|
||||
results,
|
||||
visual_thresh=0.6,
|
||||
save_name='pose.jpg',
|
||||
save_dir='output',
|
||||
returnimg=False,
|
||||
ids=None):
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib
|
||||
plt.switch_backend('agg')
|
||||
except Exception as e:
|
||||
print('Matplotlib not found, please install matplotlib.'
|
||||
'for example: `pip install matplotlib`.')
|
||||
raise e
|
||||
skeletons, scores = results['keypoint']
|
||||
skeletons = np.array(skeletons)
|
||||
kpt_nums = 17
|
||||
if len(skeletons) > 0:
|
||||
kpt_nums = skeletons.shape[1]
|
||||
if kpt_nums == 17: #plot coco keypoint
|
||||
EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8),
|
||||
(7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14),
|
||||
(13, 15), (14, 16), (11, 12)]
|
||||
else: #plot mpii keypoint
|
||||
EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8),
|
||||
(8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12),
|
||||
(8, 13)]
|
||||
NUM_EDGES = len(EDGES)
|
||||
|
||||
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
||||
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
||||
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
||||
cmap = matplotlib.cm.get_cmap('hsv')
|
||||
plt.figure()
|
||||
|
||||
img = cv2.imread(imgfile) if type(imgfile) == str else imgfile
|
||||
|
||||
color_set = results['colors'] if 'colors' in results else None
|
||||
|
||||
if 'bbox' in results and ids is None:
|
||||
bboxs = results['bbox']
|
||||
for j, rect in enumerate(bboxs):
|
||||
xmin, ymin, xmax, ymax = rect
|
||||
color = colors[0] if color_set is None else colors[color_set[j] %
|
||||
len(colors)]
|
||||
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1)
|
||||
|
||||
canvas = img.copy()
|
||||
for i in range(kpt_nums):
|
||||
for j in range(len(skeletons)):
|
||||
if skeletons[j][i, 2] < visual_thresh:
|
||||
continue
|
||||
if ids is None:
|
||||
color = colors[i] if color_set is None else colors[color_set[j]
|
||||
%
|
||||
len(colors)]
|
||||
else:
|
||||
color = get_color(ids[j])
|
||||
|
||||
cv2.circle(
|
||||
canvas,
|
||||
tuple(skeletons[j][i, 0:2].astype('int32')),
|
||||
2,
|
||||
color,
|
||||
thickness=-1)
|
||||
|
||||
to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
|
||||
fig = matplotlib.pyplot.gcf()
|
||||
|
||||
stickwidth = 2
|
||||
|
||||
for i in range(NUM_EDGES):
|
||||
for j in range(len(skeletons)):
|
||||
edge = EDGES[i]
|
||||
if skeletons[j][edge[0], 2] < visual_thresh or skeletons[j][edge[
|
||||
1], 2] < visual_thresh:
|
||||
continue
|
||||
|
||||
cur_canvas = canvas.copy()
|
||||
X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
|
||||
Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
|
||||
mX = np.mean(X)
|
||||
mY = np.mean(Y)
|
||||
length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
|
||||
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
||||
polygon = cv2.ellipse2Poly((int(mY), int(mX)),
|
||||
(int(length / 2), stickwidth),
|
||||
int(angle), 0, 360, 1)
|
||||
if ids is None:
|
||||
color = colors[i] if color_set is None else colors[color_set[j]
|
||||
%
|
||||
len(colors)]
|
||||
else:
|
||||
color = get_color(ids[j])
|
||||
cv2.fillConvexPoly(cur_canvas, polygon, color)
|
||||
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
|
||||
if returnimg:
|
||||
return canvas
|
||||
save_name = os.path.join(
|
||||
save_dir, os.path.splitext(os.path.basename(imgfile))[0] + '_vis.jpg')
|
||||
plt.imsave(save_name, canvas[:, :, ::-1])
|
||||
print("keypoint visualize image saved to: " + save_name)
|
||||
plt.close()
|
||||
|
||||
|
||||
def visualize_attr(im, results, boxes=None, is_mtmct=False):
|
||||
if isinstance(im, str):
|
||||
im = Image.open(im)
|
||||
im = np.ascontiguousarray(np.copy(im))
|
||||
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
|
||||
else:
|
||||
im = np.ascontiguousarray(np.copy(im))
|
||||
|
||||
im_h, im_w = im.shape[:2]
|
||||
text_scale = max(0.5, im.shape[0] / 3000.)
|
||||
text_thickness = 1
|
||||
|
||||
line_inter = im.shape[0] / 40.
|
||||
for i, res in enumerate(results):
|
||||
if boxes is None:
|
||||
text_w = 3
|
||||
text_h = 1
|
||||
elif is_mtmct:
|
||||
box = boxes[i] # multi camera, bbox shape is x,y, w,h
|
||||
text_w = int(box[0]) + 3
|
||||
text_h = int(box[1])
|
||||
else:
|
||||
box = boxes[i] # single camera, bbox shape is 0, 0, x,y, w,h
|
||||
text_w = int(box[2]) + 3
|
||||
text_h = int(box[3])
|
||||
for text in res:
|
||||
text_h += int(line_inter)
|
||||
text_loc = (text_w, text_h)
|
||||
cv2.putText(
|
||||
im,
|
||||
text,
|
||||
text_loc,
|
||||
cv2.FONT_ITALIC,
|
||||
text_scale, (0, 255, 255),
|
||||
thickness=text_thickness)
|
||||
return im
|
||||
|
||||
|
||||
def visualize_action(im,
|
||||
mot_boxes,
|
||||
action_visual_collector=None,
|
||||
action_text="",
|
||||
video_action_score=None,
|
||||
video_action_text=""):
|
||||
im = cv2.imread(im) if isinstance(im, str) else im
|
||||
im_h, im_w = im.shape[:2]
|
||||
|
||||
text_scale = max(1, im.shape[1] / 400.)
|
||||
text_thickness = 2
|
||||
|
||||
if action_visual_collector:
|
||||
id_action_dict = {}
|
||||
for collector, action_type in zip(action_visual_collector, action_text):
|
||||
id_detected = collector.get_visualize_ids()
|
||||
for pid in id_detected:
|
||||
id_action_dict[pid] = id_action_dict.get(pid, [])
|
||||
id_action_dict[pid].append(action_type)
|
||||
for mot_box in mot_boxes:
|
||||
# mot_box is a format with [mot_id, class, score, xmin, ymin, w, h]
|
||||
if mot_box[0] in id_action_dict:
|
||||
text_position = (int(mot_box[3] + mot_box[5] * 0.75),
|
||||
int(mot_box[4] - 10))
|
||||
display_text = ', '.join(id_action_dict[mot_box[0]])
|
||||
cv2.putText(im, display_text, text_position,
|
||||
cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), 2)
|
||||
|
||||
if video_action_score:
|
||||
cv2.putText(
|
||||
im,
|
||||
video_action_text + ': %.2f' % video_action_score,
|
||||
(int(im_w / 2), int(15 * text_scale) + 5),
|
||||
cv2.FONT_ITALIC,
|
||||
text_scale, (0, 0, 255),
|
||||
thickness=text_thickness)
|
||||
|
||||
return im
|
||||
|
||||
|
||||
def visualize_vehicleplate(im, results, boxes=None):
|
||||
if isinstance(im, str):
|
||||
im = Image.open(im)
|
||||
im = np.ascontiguousarray(np.copy(im))
|
||||
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
|
||||
else:
|
||||
im = np.ascontiguousarray(np.copy(im))
|
||||
|
||||
im_h, im_w = im.shape[:2]
|
||||
text_scale = max(1.0, im.shape[0] / 400.)
|
||||
text_thickness = 2
|
||||
|
||||
line_inter = im.shape[0] / 40.
|
||||
for i, res in enumerate(results):
|
||||
if boxes is None:
|
||||
text_w = 3
|
||||
text_h = 1
|
||||
else:
|
||||
box = boxes[i]
|
||||
text = res
|
||||
if text == "":
|
||||
continue
|
||||
text_w = int(box[2])
|
||||
text_h = int(box[5] + box[3])
|
||||
text_loc = (text_w, text_h)
|
||||
cv2.putText(
|
||||
im,
|
||||
"LP: " + text,
|
||||
text_loc,
|
||||
cv2.FONT_ITALIC,
|
||||
text_scale, (0, 255, 255),
|
||||
thickness=text_thickness)
|
||||
return im
|
||||
|
||||
|
||||
def draw_press_box_lanes(im, np_boxes, labels, threshold=0.5):
|
||||
"""
|
||||
Args:
|
||||
im (PIL.Image.Image): PIL image
|
||||
np_boxes (np.ndarray): shape:[N,6], N: number of box,
|
||||
matix element:[class, score, x_min, y_min, x_max, y_max]
|
||||
labels (list): labels:['class1', ..., 'classn']
|
||||
threshold (float): threshold of box
|
||||
Returns:
|
||||
im (PIL.Image.Image): visualized image
|
||||
"""
|
||||
|
||||
if isinstance(im, str):
|
||||
im = Image.open(im).convert('RGB')
|
||||
elif isinstance(im, np.ndarray):
|
||||
im = Image.fromarray(im)
|
||||
|
||||
draw_thickness = min(im.size) // 320
|
||||
draw = ImageDraw.Draw(im)
|
||||
clsid2color = {}
|
||||
color_list = get_color_map_list(len(labels))
|
||||
|
||||
if np_boxes.shape[1] == 7:
|
||||
np_boxes = np_boxes[:, 1:]
|
||||
|
||||
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
|
||||
np_boxes = np_boxes[expect_boxes, :]
|
||||
|
||||
for dt in np_boxes:
|
||||
clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
|
||||
if clsid not in clsid2color:
|
||||
clsid2color[clsid] = color_list[clsid]
|
||||
color = tuple(clsid2color[clsid])
|
||||
|
||||
if len(bbox) == 4:
|
||||
xmin, ymin, xmax, ymax = bbox
|
||||
# draw bbox
|
||||
draw.line(
|
||||
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
|
||||
(xmin, ymin)],
|
||||
width=draw_thickness,
|
||||
fill=(0, 0, 255))
|
||||
elif len(bbox) == 8:
|
||||
x1, y1, x2, y2, x3, y3, x4, y4 = bbox
|
||||
draw.line(
|
||||
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
|
||||
width=2,
|
||||
fill=color)
|
||||
xmin = min(x1, x2, x3, x4)
|
||||
ymin = min(y1, y2, y3, y4)
|
||||
|
||||
# draw label
|
||||
text = "{}".format(labels[clsid])
|
||||
tw, th = imagedraw_textsize_c(draw, text)
|
||||
draw.rectangle(
|
||||
[(xmin + 1, ymax - th), (xmin + tw + 1, ymax)], fill=color)
|
||||
draw.text((xmin + 1, ymax - th), text, fill=(0, 0, 255))
|
||||
return im
|
||||
|
||||
|
||||
def visualize_vehiclepress(im, results, threshold=0.5):
|
||||
results = np.array(results)
|
||||
labels = ['violation']
|
||||
im = draw_press_box_lanes(im, results, labels, threshold=threshold)
|
||||
return im
|
||||
|
||||
|
||||
def visualize_lane(im, lanes):
|
||||
if isinstance(im, str):
|
||||
im = Image.open(im).convert('RGB')
|
||||
elif isinstance(im, np.ndarray):
|
||||
im = Image.fromarray(im)
|
||||
|
||||
draw_thickness = min(im.size) // 320
|
||||
draw = ImageDraw.Draw(im)
|
||||
|
||||
if len(lanes) > 0:
|
||||
for lane in lanes:
|
||||
draw.line(
|
||||
[(lane[0], lane[1]), (lane[2], lane[3])],
|
||||
width=draw_thickness,
|
||||
fill=(0, 0, 255))
|
||||
|
||||
return im
|
||||
|
||||
|
||||
def visualize_vehicle_retrograde(im, mot_res, vehicle_retrograde_res):
|
||||
if isinstance(im, str):
|
||||
im = Image.open(im).convert('RGB')
|
||||
elif isinstance(im, np.ndarray):
|
||||
im = Image.fromarray(im)
|
||||
|
||||
draw_thickness = min(im.size) // 320
|
||||
draw = ImageDraw.Draw(im)
|
||||
|
||||
lane = vehicle_retrograde_res['fence_line']
|
||||
if lane is not None:
|
||||
draw.line(
|
||||
[(lane[0], lane[1]), (lane[2], lane[3])],
|
||||
width=draw_thickness,
|
||||
fill=(0, 0, 0))
|
||||
|
||||
mot_id = vehicle_retrograde_res['output']
|
||||
if mot_id is None or len(mot_id) == 0:
|
||||
return im
|
||||
|
||||
if mot_res is None:
|
||||
return im
|
||||
np_boxes = mot_res['boxes']
|
||||
|
||||
if np_boxes is not None:
|
||||
for dt in np_boxes:
|
||||
if dt[0] not in mot_id:
|
||||
continue
|
||||
bbox = dt[3:]
|
||||
if len(bbox) == 4:
|
||||
xmin, ymin, xmax, ymax = bbox
|
||||
# draw bbox
|
||||
draw.line(
|
||||
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
|
||||
(xmin, ymin)],
|
||||
width=draw_thickness,
|
||||
fill=(0, 255, 0))
|
||||
|
||||
# draw label
|
||||
text = "retrograde"
|
||||
tw, th = imagedraw_textsize_c(draw, text)
|
||||
draw.rectangle(
|
||||
[(xmax + 1, ymin - th), (xmax + tw + 1, ymin)],
|
||||
fill=(0, 255, 0))
|
||||
draw.text((xmax + 1, ymin - th), text, fill=(0, 255, 0))
|
||||
|
||||
return im
|
||||
|
||||
|
||||
COLORS = [
|
||||
(255, 0, 0),
|
||||
(0, 255, 0),
|
||||
(0, 0, 255),
|
||||
(255, 255, 0),
|
||||
(255, 0, 255),
|
||||
(0, 255, 255),
|
||||
(128, 255, 0),
|
||||
(255, 128, 0),
|
||||
(128, 0, 255),
|
||||
(255, 0, 128),
|
||||
(0, 128, 255),
|
||||
(0, 255, 128),
|
||||
(128, 255, 255),
|
||||
(255, 128, 255),
|
||||
(255, 255, 128),
|
||||
(60, 180, 0),
|
||||
(180, 60, 0),
|
||||
(0, 60, 180),
|
||||
(0, 180, 60),
|
||||
(60, 0, 180),
|
||||
(180, 0, 60),
|
||||
(255, 0, 0),
|
||||
(0, 255, 0),
|
||||
(0, 0, 255),
|
||||
(255, 255, 0),
|
||||
(255, 0, 255),
|
||||
(0, 255, 255),
|
||||
(128, 255, 0),
|
||||
(255, 128, 0),
|
||||
(128, 0, 255),
|
||||
]
|
||||
|
||||
|
||||
def imshow_lanes(img, lanes, show=False, out_file=None, width=4):
|
||||
lanes_xys = []
|
||||
for _, lane in enumerate(lanes):
|
||||
xys = []
|
||||
for x, y in lane:
|
||||
if x <= 0 or y <= 0:
|
||||
continue
|
||||
x, y = int(x), int(y)
|
||||
xys.append((x, y))
|
||||
lanes_xys.append(xys)
|
||||
lanes_xys.sort(key=lambda xys: xys[0][0] if len(xys) > 0 else 0)
|
||||
|
||||
for idx, xys in enumerate(lanes_xys):
|
||||
for i in range(1, len(xys)):
|
||||
cv2.line(img, xys[i - 1], xys[i], COLORS[idx], thickness=width)
|
||||
|
||||
if show:
|
||||
cv2.imshow('view', img)
|
||||
cv2.waitKey(0)
|
||||
|
||||
if out_file:
|
||||
if not os.path.exists(os.path.dirname(out_file)):
|
||||
os.makedirs(os.path.dirname(out_file))
|
||||
cv2.imwrite(out_file, img)
|
||||
Reference in New Issue
Block a user