更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,188 @@
# 服务端预测部署
`PaddleDetection`训练出来的模型可以使用[Serving](https://github.com/PaddlePaddle/Serving) 部署在服务端。
本教程以在COCO数据集上用`configs/yolov3/yolov3_darknet53_270e_coco.yml`算法训练的模型进行部署。
预训练模型权重文件为[yolov3_darknet53_270e_coco.pdparams](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) 。
## 1. 首先验证模型
```
python tools/infer.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml --infer_img=demo/000000014439.jpg -o use_gpu=True weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams --infer_img=demo/000000014439.jpg
```
## 2. 安装 paddle serving
请参考[PaddleServing](https://github.com/PaddlePaddle/Serving/tree/v0.7.0) 中安装教程安装(版本>=0.7.0)。
## 3. 导出模型
PaddleDetection在训练过程包括网络的前向和优化器相关参数而在部署过程中我们只需要前向参数具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/EXPORT_MODEL.md)
```
python tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams --export_serving_model=True
```
以上命令会在`output_inference/`文件夹下生成一个`yolov3_darknet53_270e_coco`文件夹:
```
output_inference
│ ├── yolov3_darknet53_270e_coco
│ │ ├── infer_cfg.yml
│ │ ├── model.pdiparams
│ │ ├── model.pdiparams.info
│ │ ├── model.pdmodel
│ │ ├── serving_client
│ │ │ ├── serving_client_conf.prototxt
│ │ │ ├── serving_client_conf.stream.prototxt
│ │ ├── serving_server
│ │ │ ├── __model__
│ │ │ ├── __params__
│ │ │ ├── serving_server_conf.prototxt
│ │ │ ├── serving_server_conf.stream.prototxt
│ │ │ ├── ...
```
`serving_client`文件夹下`serving_client_conf.prototxt`详细说明了模型输入输出信息
`serving_client_conf.prototxt`文件内容为:
```
feed_var {
name: "im_shape"
alias_name: "im_shape"
is_lod_tensor: false
feed_type: 1
shape: 2
}
feed_var {
name: "image"
alias_name: "image"
is_lod_tensor: false
feed_type: 1
shape: 3
shape: 608
shape: 608
}
feed_var {
name: "scale_factor"
alias_name: "scale_factor"
is_lod_tensor: false
feed_type: 1
shape: 2
}
fetch_var {
name: "multiclass_nms3_0.tmp_0"
alias_name: "multiclass_nms3_0.tmp_0"
is_lod_tensor: true
fetch_type: 1
shape: -1
}
fetch_var {
name: "multiclass_nms3_0.tmp_2"
alias_name: "multiclass_nms3_0.tmp_2"
is_lod_tensor: false
fetch_type: 2
```
## 4. 启动PaddleServing服务
```
cd output_inference/yolov3_darknet53_270e_coco/
# GPU
python -m paddle_serving_server.serve --model serving_server --port 9393 --gpu_ids 0
# CPU
python -m paddle_serving_server.serve --model serving_server --port 9393
```
## 5. 测试部署的服务
准备`label_list.txt`文件,示例`label_list.txt`文件内容为
```
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
```
设置`prototxt`文件路径为`serving_client/serving_client_conf.prototxt`
设置`fetch``fetch=["multiclass_nms3_0.tmp_0"])`
测试
```
# 进入目录
cd output_inference/yolov3_darknet53_270e_coco/
# 测试代码 test_client.py 会自动创建output文件夹并在output下生成`bbox.json`和`000000014439.jpg`两个文件
python ../../deploy/serving/test_client.py ../../deploy/serving/label_list.txt ../../demo/000000014439.jpg
```

View File

@@ -0,0 +1,74 @@
# C++ Serving预测部署
## 1. 简介
Paddle Serving是飞桨开源的服务化部署框架提供了C++ Serving和Python Pipeline两套框架
C++ Serving框架更倾向于追求极致性能Python Pipeline框架倾向于二次开发的便捷性。
旨在帮助深度学习开发者和企业提供高性能、灵活易用的工业级在线推理服务,助力人工智能落地应用。
更多关于Paddle Serving的介绍可以参考[Paddle Serving官网repo](https://github.com/PaddlePaddle/Serving)。
本文档主要介绍利用C++ Serving框架实现模型以yolov3_darknet53_270e_coco为例的服务化部署。
## 2. C++ Serving预测部署
#### 2.1 C++ 服务化部署样例程序介绍
服务化部署的样例程序的目录地址为:`deploy/serving/cpp`
```shell
deploy/
├── serving/
│ ├── python/ # Python 服务化部署样例程序目录
│ │ ├──config.yml # 服务端模型预测相关配置文件
│ │ ├──pipeline_http_client.py # 客户端代码
│ │ ├──postprocess_ops.py # 用户自定义后处理代码
│ │ ├──preprocess_ops.py # 用户自定义预处理代码
│ │ ├──README.md # 说明文档
│ │ ├──web_service.py # 服务端代码
│ ├── cpp/ # C++ 服务化部署样例程序目录
│ │ ├──preprocess/ # C++ 自定义OP
│ │ ├──build_server.sh # C++ Serving 编译脚本
│ │ ├──serving_client.py # 客户端代码
│ │ └── ...
│ └── ...
└── ...
```
### 2.2 环境准备
安装Paddle Serving三个安装包的最新版本
分别是paddle-serving-client, paddle-serving-app和paddlepaddle(CPU/GPU版本二选一)。
```commandline
pip install paddle-serving-client
# pip install paddle-serving-server # CPU
pip install paddle-serving-server-gpu # GPU 默认 CUDA10.2 + TensorRT6其他环境需手动指定版本号
pip install paddle-serving-app
# pip install paddlepaddle # CPU
pip install paddlepaddle-gpu
```
您可能需要使用国内镜像源(例如百度源, 在pip命令中添加`-i https://mirror.baidu.com/pypi/simple`)来加速下载。
Paddle Serving Server更多不同运行环境的whl包下载地址请参考[下载页面](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md)
PaddlePaddle更多版本请参考[官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)
### 2.3 服务化部署模型导出
导出步骤参考文档[PaddleDetection部署模型导出教程](../../EXPORT_MODEL.md),
导出服务化部署模型需要添加`--export_serving_model True`参数,导出示例如下:
```commandline
python tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml \
--export_serving_model True \
-o weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams
```
### 2.4 编译C++ Serving & 启动服务端模型预测服务
可使用一键编译脚本`deploy/serving/cpp/build_server.sh`进行编译
```commandline
bash deploy/serving/cpp/build_server.sh
```
当完成以上编译安装和模型导出后,可以按如下命令启动模型预测服务:
```commandline
python -m paddle_serving_server.serve --model output_inference/yolov3_darknet53_270e_coco/serving_server --op yolov3_darknet53_270e_coco --port 9997 &
```
如果需要自定义开发OP请参考[文档](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/C%2B%2B_Serving/2%2B_model.md)进行开发
### 2.5 启动客户端访问
当成功启动了模型预测服务,可以按如下命令启动客户端访问服务:
```commandline
python deploy/serving/python/serving_client.py --serving_client output_inference/yolov3_darknet53_270e_coco/serving_client --image_file demo/000000014439.jpg --http_port 9997
```

View File

@@ -0,0 +1,70 @@
#使用镜像:
#registry.baidubce.com/paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82
#编译Serving Server
#client和app可以直接使用release版本
#server因为加入了自定义OP需要重新编译
apt-get update
apt install -y libcurl4-openssl-dev libbz2-dev
wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && tar xf centos_ssl.tar && rm -rf centos_ssl.tar && mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
# 安装go依赖
rm -rf /usr/local/go
wget -qO- https://paddle-ci.cdn.bcebos.com/go1.17.2.linux-amd64.tar.gz | tar -xz -C /usr/local
export GOROOT=/usr/local/go
export GOPATH=/root/gopath
export PATH=$PATH:$GOPATH/bin:$GOROOT/bin
go env -w GO111MODULE=on
go env -w GOPROXY=https://goproxy.cn,direct
go install github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway@v1.15.2
go install github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger@v1.15.2
go install github.com/golang/protobuf/protoc-gen-go@v1.4.3
go install google.golang.org/grpc@v1.33.0
go env -w GO111MODULE=auto
# 下载opencv库
wget https://paddle-qa.bj.bcebos.com/PaddleServing/opencv3.tar.gz && tar -xvf opencv3.tar.gz && rm -rf opencv3.tar.gz
export OPENCV_DIR=$PWD/opencv3
# clone Serving
git clone https://github.com/PaddlePaddle/Serving.git -b develop --depth=1
cd Serving
export Serving_repo_path=$PWD
git submodule update --init --recursive
python -m pip install -r python/requirements.txt
# set env
export PYTHON_INCLUDE_DIR=$(python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())")
export PYTHON_LIBRARIES=$(python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))")
export PYTHON_EXECUTABLE=`which python`
export CUDA_PATH='/usr/local/cuda'
export CUDNN_LIBRARY='/usr/local/cuda/lib64/'
export CUDA_CUDART_LIBRARY='/usr/local/cuda/lib64/'
export TENSORRT_LIBRARY_PATH='/usr/local/TensorRT6-cuda10.1-cudnn7/targets/x86_64-linux-gnu/'
# cp 自定义OP代码
\cp ../deploy/serving/cpp/preprocess/*.h ${Serving_repo_path}/core/general-server/op
\cp ../deploy/serving/cpp/preprocess/*.cpp ${Serving_repo_path}/core/general-server/op
# 编译Server, export SERVING_BIN
mkdir server-build-gpu-opencv && cd server-build-gpu-opencv
cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR \
-DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \
-DCUDNN_LIBRARY=${CUDNN_LIBRARY} \
-DCUDA_CUDART_LIBRARY=${CUDA_CUDART_LIBRARY} \
-DTENSORRT_ROOT=${TENSORRT_LIBRARY_PATH} \
-DOPENCV_DIR=${OPENCV_DIR} \
-DWITH_OPENCV=ON \
-DSERVER=ON \
-DWITH_GPU=ON ..
make -j32
python -m pip install python/dist/paddle*
export SERVING_BIN=$PWD/core/general-server/serving
cd ../../

View File

@@ -0,0 +1,309 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/mask_rcnn_r50_fpn_1x_coco.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int mask_rcnn_r50_fpn_1x_coco::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
Resize(&img, scale_factor_h, scale_factor_w, im_shape_h, im_shape_w);
Normalize(&img, mean_, scale_, is_scale_);
PadStride(&img, 32);
int input_shape_h = img.rows;
int input_shape_w = img.cols;
std::vector<float> input(1 * 3 * input_shape_h * input_shape_w, 0.0f);
Permute(img, input.data());
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// im_shape
std::vector<float> im_shape{static_cast<float>(im_shape_h),
static_cast<float>(im_shape_w)};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, im_shape.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_0;
tensor_in_0.name = "im_shape";
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_0.shape = {1, 2};
tensor_in_0.lod = in->at(0).lod;
tensor_in_0.data = paddleBuf_0;
real_in->push_back(tensor_in_0);
// image
in_num = 1 * 3 * input_shape_h * input_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_1;
tensor_in_1.name = "image";
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_1.shape = {1, 3, input_shape_h, input_shape_w};
tensor_in_1.lod = in->at(0).lod;
tensor_in_1.data = paddleBuf_1;
real_in->push_back(tensor_in_1);
// scale_factor
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, scale_factor.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_2;
tensor_in_2.name = "scale_factor";
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_2.shape = {1, 2};
tensor_in_2.lod = in->at(0).lod;
tensor_in_2.data = paddleBuf_2;
real_in->push_back(tensor_in_2);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void mask_rcnn_r50_fpn_1x_coco::Resize(cv::Mat *img, float &scale_factor_h,
float &scale_factor_w, int &im_shape_h,
int &im_shape_w) {
// keep_ratio
int im_size_max = std::max(img->rows, img->cols);
int im_size_min = std::min(img->rows, img->cols);
int target_size_max = std::max(im_shape_h, im_shape_w);
int target_size_min = std::min(im_shape_h, im_shape_w);
float scale_min =
static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
float scale_max =
static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
float scale_ratio = std::min(scale_min, scale_max);
// scale_factor
scale_factor_h = scale_ratio;
scale_factor_w = scale_ratio;
// Resize
cv::resize(*img, *img, cv::Size(), scale_ratio, scale_ratio, 2);
im_shape_h = img->rows;
im_shape_w = img->cols;
}
void mask_rcnn_r50_fpn_1x_coco::Normalize(cv::Mat *img,
const std::vector<float> &mean,
const std::vector<float> &scale,
const bool is_scale) {
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
(*img).convertTo(*img, CV_32FC3, e);
for (int h = 0; h < img->rows; h++) {
for (int w = 0; w < img->cols; w++) {
img->at<cv::Vec3f>(h, w)[0] =
(img->at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img->at<cv::Vec3f>(h, w)[1] =
(img->at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img->at<cv::Vec3f>(h, w)[2] =
(img->at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
}
void mask_rcnn_r50_fpn_1x_coco::PadStride(cv::Mat *img, int stride_) {
// PadStride
if (stride_ <= 0)
return;
int rh = img->rows;
int rw = img->cols;
int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
cv::copyMakeBorder(*img, *img, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT,
cv::Scalar(0));
}
void mask_rcnn_r50_fpn_1x_coco::Permute(const cv::Mat &img, float *data) {
// Permute
int rh = img.rows;
int rw = img.cols;
int rc = img.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
}
}
cv::Mat mask_rcnn_r50_fpn_1x_coco::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string mask_rcnn_r50_fpn_1x_coco::base64Decode(const char *Data,
int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(mask_rcnn_r50_fpn_1x_coco);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,72 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class mask_rcnn_r50_fpn_1x_coco
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(mask_rcnn_r50_fpn_1x_coco);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 1333;
int im_shape_w = 800;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void Resize(cv::Mat *img, float &scale_factor_h, float &scale_factor_w,
int &im_shape_h, int &im_shape_w);
void Normalize(cv::Mat *img, const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
void PadStride(cv::Mat *img, int stride_ = -1);
void Permute(const cv::Mat &img, float *data);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,258 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/picodet_lcnet_1_5x_416_coco.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int picodet_lcnet_1_5x_416_coco::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
im_shape_w, mean_, scale_, is_scale_);
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// image
in_num = 1 * 3 * im_shape_h * im_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in;
tensor_in.name = "image";
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
tensor_in.lod = in->at(0).lod;
tensor_in.data = paddleBuf;
real_in->push_back(tensor_in);
// scale_factor
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, scale_factor.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_2;
tensor_in_2.name = "scale_factor";
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_2.shape = {1, 2};
tensor_in_2.lod = in->at(0).lod;
tensor_in_2.data = paddleBuf_2;
real_in->push_back(tensor_in_2);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void picodet_lcnet_1_5x_416_coco::preprocess_det(
const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean, const std::vector<float> &scale,
const bool is_scale) {
// scale_factor
scale_factor_h =
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
scale_factor_w =
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
// Resize
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
cv::Mat img_fp;
(resize_img).convertTo(img_fp, CV_32FC3, e);
for (int h = 0; h < im_shape_h; h++) {
for (int w = 0; w < im_shape_w; w++) {
img_fp.at<cv::Vec3f>(h, w)[0] =
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img_fp.at<cv::Vec3f>(h, w)[1] =
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img_fp.at<cv::Vec3f>(h, w)[2] =
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
// Permute
int rh = img_fp.rows;
int rw = img_fp.cols;
int rc = img_fp.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
i);
}
}
cv::Mat picodet_lcnet_1_5x_416_coco::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string picodet_lcnet_1_5x_416_coco::base64Decode(const char *Data,
int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(picodet_lcnet_1_5x_416_coco);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class picodet_lcnet_1_5x_416_coco
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(picodet_lcnet_1_5x_416_coco);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 416;
int im_shape_w = 416;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,282 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/ppyolo_mbv3_large_coco.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int ppyolo_mbv3_large_coco::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
im_shape_w, mean_, scale_, is_scale_);
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// im_shape
std::vector<float> im_shape{static_cast<float>(im_shape_h),
static_cast<float>(im_shape_w)};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, im_shape.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_0;
tensor_in_0.name = "im_shape";
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_0.shape = {1, 2};
tensor_in_0.lod = in->at(0).lod;
tensor_in_0.data = paddleBuf_0;
real_in->push_back(tensor_in_0);
// image
in_num = 1 * 3 * im_shape_h * im_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_1;
tensor_in_1.name = "image";
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_1.shape = {1, 3, im_shape_h, im_shape_w};
tensor_in_1.lod = in->at(0).lod;
tensor_in_1.data = paddleBuf_1;
real_in->push_back(tensor_in_1);
// scale_factor
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, scale_factor.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_2;
tensor_in_2.name = "scale_factor";
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_2.shape = {1, 2};
tensor_in_2.lod = in->at(0).lod;
tensor_in_2.data = paddleBuf_2;
real_in->push_back(tensor_in_2);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void ppyolo_mbv3_large_coco::preprocess_det(const cv::Mat &img, float *data,
float &scale_factor_h,
float &scale_factor_w,
int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale,
const bool is_scale) {
// scale_factor
scale_factor_h =
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
scale_factor_w =
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
// Resize
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
cv::Mat img_fp;
(resize_img).convertTo(img_fp, CV_32FC3, e);
for (int h = 0; h < im_shape_h; h++) {
for (int w = 0; w < im_shape_w; w++) {
img_fp.at<cv::Vec3f>(h, w)[0] =
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img_fp.at<cv::Vec3f>(h, w)[1] =
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img_fp.at<cv::Vec3f>(h, w)[2] =
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
// Permute
int rh = img_fp.rows;
int rw = img_fp.cols;
int rc = img_fp.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
i);
}
}
cv::Mat ppyolo_mbv3_large_coco::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string ppyolo_mbv3_large_coco::base64Decode(const char *Data,
int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(ppyolo_mbv3_large_coco);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class ppyolo_mbv3_large_coco
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(ppyolo_mbv3_large_coco);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 320;
int im_shape_w = 320;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,260 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/ppyoloe_crn_s_300e_coco.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int ppyoloe_crn_s_300e_coco::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
im_shape_w, mean_, scale_, is_scale_);
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// image
in_num = 1 * 3 * im_shape_h * im_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in;
tensor_in.name = "image";
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
tensor_in.lod = in->at(0).lod;
tensor_in.data = paddleBuf;
real_in->push_back(tensor_in);
// scale_factor
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, scale_factor.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_2;
tensor_in_2.name = "scale_factor";
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_2.shape = {1, 2};
tensor_in_2.lod = in->at(0).lod;
tensor_in_2.data = paddleBuf_2;
real_in->push_back(tensor_in_2);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void ppyoloe_crn_s_300e_coco::preprocess_det(const cv::Mat &img, float *data,
float &scale_factor_h,
float &scale_factor_w,
int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale,
const bool is_scale) {
// scale_factor
scale_factor_h =
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
scale_factor_w =
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
// Resize
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
cv::Mat img_fp;
(resize_img).convertTo(img_fp, CV_32FC3, e);
for (int h = 0; h < im_shape_h; h++) {
for (int w = 0; w < im_shape_w; w++) {
img_fp.at<cv::Vec3f>(h, w)[0] =
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img_fp.at<cv::Vec3f>(h, w)[1] =
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img_fp.at<cv::Vec3f>(h, w)[2] =
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
// Permute
int rh = img_fp.rows;
int rw = img_fp.cols;
int rc = img_fp.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
i);
}
}
cv::Mat ppyoloe_crn_s_300e_coco::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string ppyoloe_crn_s_300e_coco::base64Decode(const char *Data,
int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(ppyoloe_crn_s_300e_coco);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class ppyoloe_crn_s_300e_coco
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(ppyoloe_crn_s_300e_coco);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 640;
int im_shape_w = 640;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,232 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/tinypose_128x96.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int tinypose_128x96::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
im_shape_w, mean_, scale_, is_scale_);
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// image
in_num = 1 * 3 * im_shape_h * im_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in;
tensor_in.name = "image";
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
tensor_in.lod = in->at(0).lod;
tensor_in.data = paddleBuf;
real_in->push_back(tensor_in);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void tinypose_128x96::preprocess_det(const cv::Mat &img, float *data,
float &scale_factor_h,
float &scale_factor_w, int im_shape_h,
int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale,
const bool is_scale) {
// Resize
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 1);
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
cv::Mat img_fp;
(resize_img).convertTo(img_fp, CV_32FC3, e);
for (int h = 0; h < im_shape_h; h++) {
for (int w = 0; w < im_shape_w; w++) {
img_fp.at<cv::Vec3f>(h, w)[0] =
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img_fp.at<cv::Vec3f>(h, w)[1] =
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img_fp.at<cv::Vec3f>(h, w)[2] =
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
// Permute
int rh = img_fp.rows;
int rw = img_fp.cols;
int rc = img_fp.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
i);
}
}
cv::Mat tinypose_128x96::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string tinypose_128x96::base64Decode(const char *Data, int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(tinypose_128x96);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class tinypose_128x96
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(tinypose_128x96);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 128;
int im_shape_w = 96;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,282 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/yolov3_darknet53_270e_coco.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int yolov3_darknet53_270e_coco::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
im_shape_w, mean_, scale_, is_scale_);
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// im_shape
std::vector<float> im_shape{static_cast<float>(im_shape_h),
static_cast<float>(im_shape_w)};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, im_shape.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_0;
tensor_in_0.name = "im_shape";
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_0.shape = {1, 2};
tensor_in_0.lod = in->at(0).lod;
tensor_in_0.data = paddleBuf_0;
real_in->push_back(tensor_in_0);
// image
in_num = 1 * 3 * im_shape_h * im_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_1;
tensor_in_1.name = "image";
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_1.shape = {1, 3, im_shape_h, im_shape_w};
tensor_in_1.lod = in->at(0).lod;
tensor_in_1.data = paddleBuf_1;
real_in->push_back(tensor_in_1);
// scale_factor
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, scale_factor.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_2;
tensor_in_2.name = "scale_factor";
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_2.shape = {1, 2};
tensor_in_2.lod = in->at(0).lod;
tensor_in_2.data = paddleBuf_2;
real_in->push_back(tensor_in_2);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void yolov3_darknet53_270e_coco::preprocess_det(const cv::Mat &img, float *data,
float &scale_factor_h,
float &scale_factor_w,
int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale,
const bool is_scale) {
// scale_factor
scale_factor_h =
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
scale_factor_w =
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
// Resize
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
cv::Mat img_fp;
(resize_img).convertTo(img_fp, CV_32FC3, e);
for (int h = 0; h < im_shape_h; h++) {
for (int w = 0; w < im_shape_w; w++) {
img_fp.at<cv::Vec3f>(h, w)[0] =
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img_fp.at<cv::Vec3f>(h, w)[1] =
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img_fp.at<cv::Vec3f>(h, w)[2] =
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
// Permute
int rh = img_fp.rows;
int rw = img_fp.cols;
int rc = img_fp.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
i);
}
}
cv::Mat yolov3_darknet53_270e_coco::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string yolov3_darknet53_270e_coco::base64Decode(const char *Data,
int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(yolov3_darknet53_270e_coco);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class yolov3_darknet53_270e_coco
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(yolov3_darknet53_270e_coco);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 608;
int im_shape_w = 608;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,125 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import glob
import base64
import argparse
from paddle_serving_client import Client
from paddle_serving_client.proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
parser = argparse.ArgumentParser(description="args for paddleserving")
parser.add_argument(
"--serving_client", type=str, help="the directory of serving_client")
parser.add_argument("--image_dir", type=str)
parser.add_argument("--image_file", type=str)
parser.add_argument("--http_port", type=int, default=9997)
parser.add_argument(
"--threshold", type=float, default=0.5, help="Threshold of score.")
args = parser.parse_args()
def get_test_images(infer_dir, infer_img):
"""
Get image path list in TEST mode
"""
assert infer_img is not None or infer_dir is not None, \
"--image_file or --image_dir should be set"
assert infer_img is None or os.path.isfile(infer_img), \
"{} is not a file".format(infer_img)
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
# infer_img has a higher priority
if infer_img and os.path.isfile(infer_img):
return [infer_img]
images = set()
infer_dir = os.path.abspath(infer_dir)
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
assert len(images) > 0, "no image found in {}".format(infer_dir)
print("Found {} inference images in total.".format(len(images)))
return images
def postprocess(fetch_dict, fetch_vars, draw_threshold=0.5):
result = []
if "conv2d_441.tmp_1" in fetch_dict:
heatmap = fetch_dict["conv2d_441.tmp_1"]
print(heatmap)
result.append(heatmap)
else:
bboxes = fetch_dict[fetch_vars[0]]
for bbox in bboxes:
if bbox[0] > -1 and bbox[1] > draw_threshold:
print(f"{int(bbox[0])} {bbox[1]} "
f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
result.append(f"{int(bbox[0])} {bbox[1]} "
f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
return result
def get_model_vars(client_config_dir):
# read original serving_client_conf.prototxt
client_config_file = os.path.join(client_config_dir,
"serving_client_conf.prototxt")
with open(client_config_file, 'r') as f:
model_var = google.protobuf.text_format.Merge(
str(f.read()), m_config.GeneralModelConfig())
# modify feed_var to run core/general-server/op/
[model_var.feed_var.pop() for _ in range(len(model_var.feed_var))]
feed_var = m_config.FeedVar()
feed_var.name = "input"
feed_var.alias_name = "input"
feed_var.is_lod_tensor = False
feed_var.feed_type = 20
feed_var.shape.extend([1])
model_var.feed_var.extend([feed_var])
with open(
os.path.join(client_config_dir, "serving_client_conf_cpp.prototxt"),
"w") as f:
f.write(str(model_var))
# get feed_vars/fetch_vars
feed_vars = [var.name for var in model_var.feed_var]
fetch_vars = [var.name for var in model_var.fetch_var]
return feed_vars, fetch_vars
if __name__ == '__main__':
url = f"127.0.0.1:{args.http_port}"
logid = 10000
img_list = get_test_images(args.image_dir, args.image_file)
feed_vars, fetch_vars = get_model_vars(args.serving_client)
client = Client()
client.load_client_config(
os.path.join(args.serving_client, "serving_client_conf_cpp.prototxt"))
client.connect([url])
for img_file in img_list:
with open(img_file, 'rb') as file:
image_data = file.read()
image = base64.b64encode(image_data).decode('utf8')
fetch_dict = client.predict(
feed={feed_vars[0]: image}, fetch=fetch_vars)
result = postprocess(fetch_dict, fetch_vars, args.threshold)

View File

@@ -0,0 +1,20 @@
feed_var {
name: "input"
alias_name: "input"
is_lod_tensor: false
feed_type: 20
shape: 1
}
fetch_var {
name: "multiclass_nms3_0.tmp_0"
alias_name: "multiclass_nms3_0.tmp_0"
is_lod_tensor: true
fetch_type: 1
shape: -1
}
fetch_var {
name: "multiclass_nms3_0.tmp_2"
alias_name: "multiclass_nms3_0.tmp_2"
is_lod_tensor: false
fetch_type: 2
}

View File

@@ -0,0 +1,80 @@
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush

View File

@@ -0,0 +1,72 @@
# Python Serving预测部署
## 1. 简介
Paddle Serving是飞桨开源的服务化部署框架提供了C++ Serving和Python Pipeline两套框架
C++ Serving框架更倾向于追求极致性能Python Pipeline框架倾向于二次开发的便捷性。
旨在帮助深度学习开发者和企业提供高性能、灵活易用的工业级在线推理服务,助力人工智能落地应用。
更多关于Paddle Serving的介绍可以参考[Paddle Serving官网repo](https://github.com/PaddlePaddle/Serving)。
本文档主要介绍利用Python Pipeline框架实现模型以yolov3_darknet53_270e_coco为例的服务化部署。
## 2. Python Serving预测部署
#### 2.1 Python 服务化部署样例程序介绍
服务化部署的样例程序的目录地址为:`deploy/serving/python`
```shell
deploy/
├── serving/
│ ├── python/ # Python 服务化部署样例程序目录
│ │ ├──config.yml # 服务端模型预测相关配置文件
│ │ ├──pipeline_http_client.py # 客户端代码
│ │ ├──postprocess_ops.py # 用户自定义后处理代码
│ │ ├──preprocess_ops.py # 用户自定义预处理代码
│ │ ├──README.md # 说明文档
│ │ ├──web_service.py # 服务端代码
│ ├── cpp/ # C++ 服务化部署样例程序目录
│ │ ├──preprocess/ # C++ 自定义OP
│ │ ├──build_server.sh # C++ Serving 编译脚本
│ │ ├──serving_client.py # 客户端代码
│ │ └── ...
│ └── ...
└── ...
```
### 2.2 环境准备
安装Paddle Serving四个安装包的最新版本
分别是paddle-serving-server(CPU/GPU版本二选一),
paddle-serving-client, paddle-serving-app和paddlepaddle(CPU/GPU版本二选一)。
```commandline
pip install paddle-serving-client
# pip install paddle-serving-server # CPU
pip install paddle-serving-server-gpu # GPU 默认 CUDA10.2 + TensorRT6其他环境需手动指定版本号
pip install paddle-serving-app
# pip install paddlepaddle # CPU
pip install paddlepaddle-gpu
```
您可能需要使用国内镜像源(例如百度源, 在pip命令中添加`-i https://mirror.baidu.com/pypi/simple`)来加速下载。
Paddle Serving Server更多不同运行环境的whl包下载地址请参考[下载页面](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md)
PaddlePaddle更多版本请参考[官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)
### 2.3 服务化部署模型导出
导出步骤参考文档[PaddleDetection部署模型导出教程](../../EXPORT_MODEL.md),
导出服务化部署模型需要添加`--export_serving_model True`参数,导出示例如下:
```commandline
python tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml \
--export_serving_model True \
-o weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams
```
### 2.4 启动服务端模型预测服务
当完成以上环境准备和模型导出后,可以按如下命令启动模型预测服务:
```commandline
python deploy/serving/python/web_service.py --model_dir output_inference/yolov3_darknet53_270e_coco &
```
服务端模型预测相关配置可在[config.yml](./config.yml)中修改,
开发者只需要关注如下配置http_port服务的http端口device_type计算硬件类型devices计算硬件ID
### 2.5 启动客户端访问
当成功启动了模型预测服务,可以按如下命令启动客户端访问服务:
```commandline
python deploy/serving/python/pipeline_http_client.py --image_file demo/000000014439.jpg
```

View File

@@ -0,0 +1,31 @@
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 20
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时不自动生成http_port
http_port: 18093
rpc_port: 9993
dag:
#op资源类型, True, 为线程模型False为进程模型
is_thread_op: False
op:
#op名称与web_service中的TIPCExampleService初始化name参数一致
ppdet:
#并发数is_thread_op=True时为线程并发否则为进程并发
concurrency: 1
#当op配置没有server_endpoints时从local_service_conf读取本地服务配置
local_service_conf:
#uci模型路径
model_config: "./serving_server"
#计算硬件类型: 空缺时由devices决定(CPU/GPU)0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type:
#计算硬件ID当devices为""或不写时为CPU预测当devices为"0", "0,1,2"时为GPU预测表示使用的GPU卡
devices: "0" # "0,1"
#client类型包括brpc, grpc和local_predictor.local_predictor不启动Serving服务进程内预测
client_type: local_predictor

View File

@@ -0,0 +1,76 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import requests
import json
import base64
import os
import argparse
parser = argparse.ArgumentParser(description="args for paddleserving")
parser.add_argument("--image_dir", type=str)
parser.add_argument("--image_file", type=str)
parser.add_argument("--http_port", type=int, default=18093)
parser.add_argument("--service_name", type=str, default="ppdet")
args = parser.parse_args()
def get_test_images(infer_dir, infer_img):
"""
Get image path list in TEST mode
"""
assert infer_img is not None or infer_dir is not None, \
"--image_file or --image_dir should be set"
assert infer_img is None or os.path.isfile(infer_img), \
"{} is not a file".format(infer_img)
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
# infer_img has a higher priority
if infer_img and os.path.isfile(infer_img):
return [infer_img]
images = set()
infer_dir = os.path.abspath(infer_dir)
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
assert len(images) > 0, "no image found in {}".format(infer_dir)
print("Found {} inference images in total.".format(len(images)))
return images
if __name__ == "__main__":
url = f"http://127.0.0.1:{args.http_port}/{args.service_name}/prediction"
logid = 10000
img_list = get_test_images(args.image_dir, args.image_file)
for img_file in img_list:
with open(img_file, 'rb') as file:
image_data = file.read()
# base64 encode
image = base64.b64encode(image_data).decode('utf8')
data = {"key": ["image_0"], "value": [image], "logid": logid}
# send requests
r = requests.post(url=url, data=json.dumps(data))
print(r.json())

View File

@@ -0,0 +1,171 @@
import cv2
import math
import numpy as np
from preprocess_ops import get_affine_transform
class HRNetPostProcess(object):
def __init__(self, use_dark=True):
self.use_dark = use_dark
def flip_back(self, output_flipped, matched_parts):
assert output_flipped.ndim == 4,\
'output_flipped should be [batch_size, num_joints, height, width]'
output_flipped = output_flipped[:, :, :, ::-1]
for pair in matched_parts:
tmp = output_flipped[:, pair[0], :, :].copy()
output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
output_flipped[:, pair[1], :, :] = tmp
return output_flipped
def get_max_preds(self, heatmaps):
"""get predictions from score maps
Args:
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
"""
assert isinstance(heatmaps,
np.ndarray), 'heatmaps should be numpy.ndarray'
assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'
batch_size = heatmaps.shape[0]
num_joints = heatmaps.shape[1]
width = heatmaps.shape[3]
heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
idx = np.argmax(heatmaps_reshaped, 2)
maxvals = np.amax(heatmaps_reshaped, 2)
maxvals = maxvals.reshape((batch_size, num_joints, 1))
idx = idx.reshape((batch_size, num_joints, 1))
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
preds[:, :, 0] = (preds[:, :, 0]) % width
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
pred_mask = pred_mask.astype(np.float32)
preds *= pred_mask
return preds, maxvals
def gaussian_blur(self, heatmap, kernel):
border = (kernel - 1) // 2
batch_size = heatmap.shape[0]
num_joints = heatmap.shape[1]
height = heatmap.shape[2]
width = heatmap.shape[3]
for i in range(batch_size):
for j in range(num_joints):
origin_max = np.max(heatmap[i, j])
dr = np.zeros((height + 2 * border, width + 2 * border))
dr[border:-border, border:-border] = heatmap[i, j].copy()
dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
heatmap[i, j] = dr[border:-border, border:-border].copy()
heatmap[i, j] *= origin_max / np.max(heatmap[i, j])
return heatmap
def dark_parse(self, hm, coord):
heatmap_height = hm.shape[0]
heatmap_width = hm.shape[1]
px = int(coord[0])
py = int(coord[1])
if 1 < px < heatmap_width - 2 and 1 < py < heatmap_height - 2:
dx = 0.5 * (hm[py][px + 1] - hm[py][px - 1])
dy = 0.5 * (hm[py + 1][px] - hm[py - 1][px])
dxx = 0.25 * (hm[py][px + 2] - 2 * hm[py][px] + hm[py][px - 2])
dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1] \
+ hm[py-1][px-1])
dyy = 0.25 * (
hm[py + 2 * 1][px] - 2 * hm[py][px] + hm[py - 2 * 1][px])
derivative = np.matrix([[dx], [dy]])
hessian = np.matrix([[dxx, dxy], [dxy, dyy]])
if dxx * dyy - dxy**2 != 0:
hessianinv = hessian.I
offset = -hessianinv * derivative
offset = np.squeeze(np.array(offset.T), axis=0)
coord += offset
return coord
def dark_postprocess(self, hm, coords, kernelsize):
"""
refer to https://github.com/ilovepose/DarkPose/lib/core/inference.py
"""
hm = self.gaussian_blur(hm, kernelsize)
hm = np.maximum(hm, 1e-10)
hm = np.log(hm)
for n in range(coords.shape[0]):
for p in range(coords.shape[1]):
coords[n, p] = self.dark_parse(hm[n][p], coords[n][p])
return coords
def get_final_preds(self, heatmaps, center, scale, kernelsize=3):
"""the highest heatvalue location with a quarter offset in the
direction from the highest response to the second highest response.
Args:
heatmaps (numpy.ndarray): The predicted heatmaps
center (numpy.ndarray): The boxes center
scale (numpy.ndarray): The scale factor
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
"""
coords, maxvals = self.get_max_preds(heatmaps)
heatmap_height = heatmaps.shape[2]
heatmap_width = heatmaps.shape[3]
if self.use_dark:
coords = self.dark_postprocess(heatmaps, coords, kernelsize)
else:
for n in range(coords.shape[0]):
for p in range(coords.shape[1]):
hm = heatmaps[n][p]
px = int(math.floor(coords[n][p][0] + 0.5))
py = int(math.floor(coords[n][p][1] + 0.5))
if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
diff = np.array([
hm[py][px + 1] - hm[py][px - 1],
hm[py + 1][px] - hm[py - 1][px]
])
coords[n][p] += np.sign(diff) * .25
preds = coords.copy()
# Transform back
for i in range(coords.shape[0]):
preds[i] = transform_preds(coords[i], center[i], scale[i],
[heatmap_width, heatmap_height])
return preds, maxvals
def __call__(self, output, center, scale):
preds, maxvals = self.get_final_preds(output, center, scale)
return np.concatenate(
(preds, maxvals), axis=-1), np.mean(
maxvals, axis=1)
def transform_preds(coords, center, scale, output_size):
target_coords = np.zeros(coords.shape)
trans = get_affine_transform(center, scale * 200, 0, output_size, inv=1)
for p in range(coords.shape[0]):
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
return target_coords
def affine_transform(pt, t):
new_pt = np.array([pt[0], pt[1], 1.]).T
new_pt = np.dot(t, new_pt)
return new_pt[:2]

View File

@@ -0,0 +1,490 @@
import numpy as np
import cv2
import copy
def decode_image(im):
im = np.array(im)
img_info = {
"im_shape": np.array(
im.shape[:2], dtype=np.float32),
"scale_factor": np.array(
[1., 1.], dtype=np.float32)
}
return im, img_info
class Resize(object):
"""resize image by target_size and max_size
Args:
target_size (int): the target size of image
keep_ratio (bool): whether keep_ratio or not, default true
interp (int): method of resize
"""
def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
if isinstance(target_size, int):
target_size = [target_size, target_size]
self.target_size = target_size
self.keep_ratio = keep_ratio
self.interp = interp
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
assert len(self.target_size) == 2
assert self.target_size[0] > 0 and self.target_size[1] > 0
im_channel = im.shape[2]
im_scale_y, im_scale_x = self.generate_scale(im)
im = cv2.resize(
im,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=self.interp)
im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
im_info['scale_factor'] = np.array(
[im_scale_y, im_scale_x]).astype('float32')
return im, im_info
def generate_scale(self, im):
"""
Args:
im (np.ndarray): image (np.ndarray)
Returns:
im_scale_x: the resize ratio of X
im_scale_y: the resize ratio of Y
"""
origin_shape = im.shape[:2]
im_c = im.shape[2]
if self.keep_ratio:
im_size_min = np.min(origin_shape)
im_size_max = np.max(origin_shape)
target_size_min = np.min(self.target_size)
target_size_max = np.max(self.target_size)
im_scale = float(target_size_min) / float(im_size_min)
if np.round(im_scale * im_size_max) > target_size_max:
im_scale = float(target_size_max) / float(im_size_max)
im_scale_x = im_scale
im_scale_y = im_scale
else:
resize_h, resize_w = self.target_size
im_scale_y = resize_h / float(origin_shape[0])
im_scale_x = resize_w / float(origin_shape[1])
return im_scale_y, im_scale_x
class NormalizeImage(object):
"""normalize image
Args:
mean (list): im - mean
std (list): im / std
is_scale (bool): whether need im / 255
norm_type (str): type in ['mean_std', 'none']
"""
def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
self.mean = mean
self.std = std
self.is_scale = is_scale
self.norm_type = norm_type
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
im = im.astype(np.float32, copy=False)
if self.is_scale:
scale = 1.0 / 255.0
im *= scale
if self.norm_type == 'mean_std':
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
im -= mean
im /= std
return im, im_info
class Permute(object):
"""permute image
Args:
to_bgr (bool): whether convert RGB to BGR
channel_first (bool): whether convert HWC to CHW
"""
def __init__(self, ):
super(Permute, self).__init__()
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
im = im.transpose((2, 0, 1)).copy()
return im, im_info
class PadStride(object):
""" padding image for model with FPN, instead PadBatch(pad_to_stride) in original config
Args:
stride (bool): model with FPN need image shape % stride == 0
"""
def __init__(self, stride=0):
self.coarsest_stride = stride
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
coarsest_stride = self.coarsest_stride
if coarsest_stride <= 0:
return im, im_info
im_c, im_h, im_w = im.shape
pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
padding_im[:, :im_h, :im_w] = im
return padding_im, im_info
class LetterBoxResize(object):
def __init__(self, target_size):
"""
Resize image to target size, convert normalized xywh to pixel xyxy
format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]).
Args:
target_size (int|list): image target size.
"""
super(LetterBoxResize, self).__init__()
if isinstance(target_size, int):
target_size = [target_size, target_size]
self.target_size = target_size
def letterbox(self, img, height, width, color=(127.5, 127.5, 127.5)):
# letterbox: resize a rectangular image to a padded rectangular
shape = img.shape[:2] # [height, width]
ratio_h = float(height) / shape[0]
ratio_w = float(width) / shape[1]
ratio = min(ratio_h, ratio_w)
new_shape = (round(shape[1] * ratio),
round(shape[0] * ratio)) # [width, height]
padw = (width - new_shape[0]) / 2
padh = (height - new_shape[1]) / 2
top, bottom = round(padh - 0.1), round(padh + 0.1)
left, right = round(padw - 0.1), round(padw + 0.1)
img = cv2.resize(
img, new_shape, interpolation=cv2.INTER_AREA) # resized, no border
img = cv2.copyMakeBorder(
img, top, bottom, left, right, cv2.BORDER_CONSTANT,
value=color) # padded rectangular
return img, ratio, padw, padh
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
assert len(self.target_size) == 2
assert self.target_size[0] > 0 and self.target_size[1] > 0
height, width = self.target_size
h, w = im.shape[:2]
im, ratio, padw, padh = self.letterbox(im, height=height, width=width)
new_shape = [round(h * ratio), round(w * ratio)]
im_info['im_shape'] = np.array(new_shape, dtype=np.float32)
im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32)
return im, im_info
class Pad(object):
def __init__(self, size, fill_value=[114.0, 114.0, 114.0]):
"""
Pad image to a specified size.
Args:
size (list[int]): image target size
fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
"""
super(Pad, self).__init__()
if isinstance(size, int):
size = [size, size]
self.size = size
self.fill_value = fill_value
def __call__(self, im, im_info):
im_h, im_w = im.shape[:2]
h, w = self.size
if h == im_h and w == im_w:
im = im.astype(np.float32)
return im, im_info
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array(self.fill_value, dtype=np.float32)
canvas[0:im_h, 0:im_w, :] = im.astype(np.float32)
im = canvas
return im, im_info
def rotate_point(pt, angle_rad):
"""Rotate a point by an angle.
Args:
pt (list[float]): 2 dimensional point to be rotated
angle_rad (float): rotation angle by radian
Returns:
list[float]: Rotated point.
"""
assert len(pt) == 2
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
new_x = pt[0] * cs - pt[1] * sn
new_y = pt[0] * sn + pt[1] * cs
rotated_pt = [new_x, new_y]
return rotated_pt
def _get_3rd_point(a, b):
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
The 3rd point is defined by rotating vector `a - b` by 90 degrees
anticlockwise, using b as the rotation center.
Args:
a (np.ndarray): point(x,y)
b (np.ndarray): point(x,y)
Returns:
np.ndarray: The 3rd point.
"""
assert len(a) == 2
assert len(b) == 2
direction = a - b
third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)
return third_pt
def get_affine_transform(center,
input_size,
rot,
output_size,
shift=(0., 0.),
inv=False):
"""Get the affine transform matrix, given the center/scale/rot/output_size.
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
rot (float): Rotation angle (degree).
output_size (np.ndarray[2, ]): Size of the destination heatmaps.
shift (0-100%): Shift translation ratio wrt the width/height.
Default (0., 0.).
inv (bool): Option to inverse the affine transform direction.
(inv=False: src->dst or inv=True: dst->src)
Returns:
np.ndarray: The transform matrix.
"""
assert len(center) == 2
assert len(output_size) == 2
assert len(shift) == 2
if not isinstance(input_size, (np.ndarray, list)):
input_size = np.array([input_size, input_size], dtype=np.float32)
scale_tmp = input_size
shift = np.array(shift)
src_w = scale_tmp[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.pi * rot / 180
src_dir = rotate_point([0., src_w * -0.5], rot_rad)
dst_dir = np.array([0., dst_w * -0.5])
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale_tmp * shift
src[1, :] = center + src_dir + scale_tmp * shift
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
class WarpAffine(object):
"""Warp affine the image
"""
def __init__(self,
keep_res=False,
pad=31,
input_h=512,
input_w=512,
scale=0.4,
shift=0.1):
self.keep_res = keep_res
self.pad = pad
self.input_h = input_h
self.input_w = input_w
self.scale = scale
self.shift = shift
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
img = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
h, w = img.shape[:2]
if self.keep_res:
input_h = (h | self.pad) + 1
input_w = (w | self.pad) + 1
s = np.array([input_w, input_h], dtype=np.float32)
c = np.array([w // 2, h // 2], dtype=np.float32)
else:
s = max(h, w) * 1.0
input_h, input_w = self.input_h, self.input_w
c = np.array([w / 2., h / 2.], dtype=np.float32)
trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
img = cv2.resize(img, (w, h))
inp = cv2.warpAffine(
img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
return inp, im_info
# keypoint preprocess
def get_warp_matrix(theta, size_input, size_dst, size_target):
"""This code is based on
https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py
Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta = np.deg2rad(theta)
matrix = np.zeros((2, 3), dtype=np.float32)
scale_x = size_dst[0] / size_target[0]
scale_y = size_dst[1] / size_target[1]
matrix[0, 0] = np.cos(theta) * scale_x
matrix[0, 1] = -np.sin(theta) * scale_x
matrix[0, 2] = scale_x * (
-0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
np.sin(theta) + 0.5 * size_target[0])
matrix[1, 0] = np.sin(theta) * scale_y
matrix[1, 1] = np.cos(theta) * scale_y
matrix[1, 2] = scale_y * (
-0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
np.cos(theta) + 0.5 * size_target[1])
return matrix
class TopDownEvalAffine(object):
"""apply affine transform to image and coords
Args:
trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the image and coords after tranformed
"""
def __init__(self, trainsize, use_udp=False):
self.trainsize = trainsize
self.use_udp = use_udp
def __call__(self, image, im_info):
rot = 0
imshape = im_info['im_shape'][::-1]
center = im_info['center'] if 'center' in im_info else imshape / 2.
scale = im_info['scale'] if 'scale' in im_info else imshape
if self.use_udp:
trans = get_warp_matrix(
rot, center * 2.0,
[self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
else:
trans = get_affine_transform(center, scale, rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
return image, im_info
class Compose:
def __init__(self, transforms):
self.transforms = []
for op_info in transforms:
new_op_info = op_info.copy()
op_type = new_op_info.pop('type')
self.transforms.append(eval(op_type)(**new_op_info))
def __call__(self, img):
img, im_info = decode_image(img)
for t in self.transforms:
img, im_info = t(img, im_info)
inputs = copy.deepcopy(im_info)
inputs['image'] = img
return inputs

View File

@@ -0,0 +1,261 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from paddle_serving_server.web_service import WebService, Op
from paddle_serving_server.proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
import os
import numpy as np
import base64
from PIL import Image
import io
from preprocess_ops import Compose
from postprocess_ops import HRNetPostProcess
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import yaml
# Global dictionary
SUPPORT_MODELS = {
'YOLO', 'PPYOLOE', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet',
'S2ANet', 'JDE', 'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet',
'TOOD', 'RetinaNet', 'StrongBaseline', 'STGCN', 'YOLOX', 'HRNet'
}
GLOBAL_VAR = {}
class ArgsParser(ArgumentParser):
def __init__(self):
super(ArgsParser, self).__init__(
formatter_class=RawDescriptionHelpFormatter)
self.add_argument(
"-c",
"--config",
default="deploy/serving/python/config.yml",
help="configuration file to use")
self.add_argument(
"--model_dir",
type=str,
default=None,
help=("Directory include:'model.pdiparams', 'model.pdmodel', "
"'infer_cfg.yml', created by tools/export_model.py."),
required=True)
self.add_argument(
"-o", "--opt", nargs='+', help="set configuration options")
def parse_args(self, argv=None):
args = super(ArgsParser, self).parse_args(argv)
assert args.config is not None, \
"Please specify --config=configure_file_path."
args.service_config = self._parse_opt(args.opt, args.config)
args.model_config = PredictConfig(args.model_dir)
return args
def _parse_helper(self, v):
if v.isnumeric():
if "." in v:
v = float(v)
else:
v = int(v)
elif v == "True" or v == "False":
v = (v == "True")
return v
def _parse_opt(self, opts, conf_path):
f = open(conf_path)
config = yaml.load(f, Loader=yaml.Loader)
if not opts:
return config
for s in opts:
s = s.strip()
k, v = s.split('=')
v = self._parse_helper(v)
if "devices" in k:
v = str(v)
print(k, v, type(v))
cur = config
parent = cur
for kk in k.split("."):
if kk not in cur:
cur[kk] = {}
parent = cur
cur = cur[kk]
else:
parent = cur
cur = cur[kk]
parent[k.split(".")[-1]] = v
return config
class PredictConfig(object):
"""set config of preprocess, postprocess and visualize
Args:
model_dir (str): root path of infer_cfg.yml
"""
def __init__(self, model_dir):
# parsing Yaml config for Preprocess
deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
with open(deploy_file) as f:
yml_conf = yaml.safe_load(f)
self.check_model(yml_conf)
self.arch = yml_conf['arch']
self.preprocess_infos = yml_conf['Preprocess']
self.min_subgraph_size = yml_conf['min_subgraph_size']
self.label_list = yml_conf['label_list']
self.use_dynamic_shape = yml_conf['use_dynamic_shape']
self.draw_threshold = yml_conf.get("draw_threshold", 0.5)
self.mask = yml_conf.get("mask", False)
self.tracker = yml_conf.get("tracker", None)
self.nms = yml_conf.get("NMS", None)
self.fpn_stride = yml_conf.get("fpn_stride", None)
if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
print(
'The RCNN export model is used for ONNX and it only supports batch_size = 1'
)
self.print_config()
def check_model(self, yml_conf):
"""
Raises:
ValueError: loaded model not in supported model type
"""
for support_model in SUPPORT_MODELS:
if support_model in yml_conf['arch']:
return True
raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
'arch'], SUPPORT_MODELS))
def print_config(self):
print('----------- Model Configuration -----------')
print('%s: %s' % ('Model Arch', self.arch))
print('%s: ' % ('Transform Order'))
for op_info in self.preprocess_infos:
print('--%s: %s' % ('transform op', op_info['type']))
print('--------------------------------------------')
class DetectorOp(Op):
def init_op(self):
self.preprocess_pipeline = Compose(GLOBAL_VAR['preprocess_ops'])
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
inputs = []
for key, data in input_dict.items():
data = base64.b64decode(data.encode('utf8'))
byte_stream = io.BytesIO(data)
img = Image.open(byte_stream).convert("RGB")
inputs.append(self.preprocess_pipeline(img))
inputs = self.collate_inputs(inputs)
return inputs, False, None, ""
def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
(_, input_dict), = input_dicts.items()
if GLOBAL_VAR['model_config'].arch in ["HRNet"]:
result = self.parse_keypoint_result(input_dict, fetch_dict)
else:
result = self.parse_detection_result(input_dict, fetch_dict)
return result, None, ""
def collate_inputs(self, inputs):
collate_inputs = {k: [] for k in inputs[0].keys()}
for info in inputs:
for k in collate_inputs.keys():
collate_inputs[k].append(info[k])
return {
k: np.stack(v)
for k, v in collate_inputs.items() if k in GLOBAL_VAR['feed_vars']
}
def parse_detection_result(self, input_dict, fetch_dict):
bboxes = fetch_dict[GLOBAL_VAR['fetch_vars'][0]]
bboxes_num = fetch_dict[GLOBAL_VAR['fetch_vars'][1]]
if GLOBAL_VAR['model_config'].mask:
masks = fetch_dict[GLOBAL_VAR['fetch_vars'][2]]
idx = 0
results = {}
for img_name, num in zip(input_dict.keys(), bboxes_num):
if num == 0:
results[img_name] = 'No object detected!'
else:
result = []
bbox = bboxes[idx:idx + num]
for line in bbox:
if line[0] > -1 and line[1] > GLOBAL_VAR[
'model_config'].draw_threshold:
result.append(
f"{int(line[0])} {line[1]} "
f"{line[2]} {line[3]} {line[4]} {line[5]}")
if len(result) == 0:
result = 'No object detected!'
results[img_name] = result
idx += num
return results
def parse_keypoint_result(self, input_dict, fetch_dict):
heatmap = fetch_dict["conv2d_441.tmp_1"]
keypoint_postprocess = HRNetPostProcess()
im_shape = []
for key, data in input_dict.items():
data = base64.b64decode(data.encode('utf8'))
byte_stream = io.BytesIO(data)
img = Image.open(byte_stream).convert("RGB")
im_shape.append([img.width, img.height])
im_shape = np.array(im_shape)
center = np.round(im_shape / 2.)
scale = im_shape / 200.
kpts, scores = keypoint_postprocess(heatmap, center, scale)
results = {"keypoint": kpts, "scores": scores}
return results
class DetectorService(WebService):
def get_pipeline_response(self, read_op):
return DetectorOp(name="ppdet", input_ops=[read_op])
def get_model_vars(model_dir, service_config):
serving_server_dir = os.path.join(model_dir, "serving_server")
# rewrite model_config
service_config['op']['ppdet']['local_service_conf'][
'model_config'] = serving_server_dir
serving_server_conf = os.path.join(serving_server_dir,
"serving_server_conf.prototxt")
with open(serving_server_conf, 'r') as f:
model_var = google.protobuf.text_format.Merge(
str(f.read()), m_config.GeneralModelConfig())
feed_vars = [var.name for var in model_var.feed_var]
fetch_vars = [var.name for var in model_var.fetch_var]
return feed_vars, fetch_vars
if __name__ == '__main__':
# load config and prepare the service
FLAGS = ArgsParser().parse_args()
feed_vars, fetch_vars = get_model_vars(FLAGS.model_dir,
FLAGS.service_config)
GLOBAL_VAR['feed_vars'] = feed_vars
GLOBAL_VAR['fetch_vars'] = fetch_vars
GLOBAL_VAR['preprocess_ops'] = FLAGS.model_config.preprocess_infos
GLOBAL_VAR['model_config'] = FLAGS.model_config
print(FLAGS)
# define the service
uci_service = DetectorService(name="ppdet")
uci_service.prepare_pipeline_config(yml_dict=FLAGS.service_config)
# start the service
uci_service.run_service()

View File

@@ -0,0 +1,43 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
preprocess = Sequential([
File2Image(), BGR2RGB(), Resize(
(608, 608), interpolation=cv2.INTER_LINEAR), Div(255.0), Transpose(
(2, 0, 1))
])
postprocess = RCNNPostprocess(sys.argv[1], "output", [608, 608])
client = Client()
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9393'])
im = preprocess(sys.argv[2])
fetch_map = client.predict(
feed={
"image": im,
"im_shape": np.array(list(im.shape[1:])).reshape(-1),
"scale_factor": np.array([1.0, 1.0]).reshape(-1),
},
fetch=["multiclass_nms3_0.tmp_0"],
batch=False)
print(fetch_map)
fetch_map["image"] = sys.argv[2]
postprocess(fetch_map)