更换文档检测模型
This commit is contained in:
74
paddle_detection/deploy/serving/cpp/README.md
Normal file
74
paddle_detection/deploy/serving/cpp/README.md
Normal file
@@ -0,0 +1,74 @@
|
||||
# C++ Serving预测部署
|
||||
|
||||
## 1. 简介
|
||||
Paddle Serving是飞桨开源的服务化部署框架,提供了C++ Serving和Python Pipeline两套框架,
|
||||
C++ Serving框架更倾向于追求极致性能,Python Pipeline框架倾向于二次开发的便捷性。
|
||||
旨在帮助深度学习开发者和企业提供高性能、灵活易用的工业级在线推理服务,助力人工智能落地应用。
|
||||
|
||||
更多关于Paddle Serving的介绍,可以参考[Paddle Serving官网repo](https://github.com/PaddlePaddle/Serving)。
|
||||
|
||||
本文档主要介绍利用C++ Serving框架实现模型(以yolov3_darknet53_270e_coco为例)的服务化部署。
|
||||
|
||||
## 2. C++ Serving预测部署
|
||||
|
||||
#### 2.1 C++ 服务化部署样例程序介绍
|
||||
服务化部署的样例程序的目录地址为:`deploy/serving/cpp`
|
||||
```shell
|
||||
deploy/
|
||||
├── serving/
|
||||
│ ├── python/ # Python 服务化部署样例程序目录
|
||||
│ │ ├──config.yml # 服务端模型预测相关配置文件
|
||||
│ │ ├──pipeline_http_client.py # 客户端代码
|
||||
│ │ ├──postprocess_ops.py # 用户自定义后处理代码
|
||||
│ │ ├──preprocess_ops.py # 用户自定义预处理代码
|
||||
│ │ ├──README.md # 说明文档
|
||||
│ │ ├──web_service.py # 服务端代码
|
||||
│ ├── cpp/ # C++ 服务化部署样例程序目录
|
||||
│ │ ├──preprocess/ # C++ 自定义OP
|
||||
│ │ ├──build_server.sh # C++ Serving 编译脚本
|
||||
│ │ ├──serving_client.py # 客户端代码
|
||||
│ │ └── ...
|
||||
│ └── ...
|
||||
└── ...
|
||||
```
|
||||
|
||||
### 2.2 环境准备
|
||||
安装Paddle Serving三个安装包的最新版本,
|
||||
分别是:paddle-serving-client, paddle-serving-app和paddlepaddle(CPU/GPU版本二选一)。
|
||||
```commandline
|
||||
pip install paddle-serving-client
|
||||
# pip install paddle-serving-server # CPU
|
||||
pip install paddle-serving-server-gpu # GPU 默认 CUDA10.2 + TensorRT6,其他环境需手动指定版本号
|
||||
pip install paddle-serving-app
|
||||
# pip install paddlepaddle # CPU
|
||||
pip install paddlepaddle-gpu
|
||||
```
|
||||
您可能需要使用国内镜像源(例如百度源, 在pip命令中添加`-i https://mirror.baidu.com/pypi/simple`)来加速下载。
|
||||
Paddle Serving Server更多不同运行环境的whl包下载地址,请参考:[下载页面](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md)
|
||||
PaddlePaddle更多版本请参考[官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)
|
||||
|
||||
### 2.3 服务化部署模型导出
|
||||
导出步骤参考文档[PaddleDetection部署模型导出教程](../../EXPORT_MODEL.md),
|
||||
导出服务化部署模型需要添加`--export_serving_model True`参数,导出示例如下:
|
||||
```commandline
|
||||
python tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml \
|
||||
--export_serving_model True \
|
||||
-o weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams
|
||||
```
|
||||
|
||||
### 2.4 编译C++ Serving & 启动服务端模型预测服务
|
||||
可使用一键编译脚本`deploy/serving/cpp/build_server.sh`进行编译
|
||||
```commandline
|
||||
bash deploy/serving/cpp/build_server.sh
|
||||
```
|
||||
当完成以上编译安装和模型导出后,可以按如下命令启动模型预测服务:
|
||||
```commandline
|
||||
python -m paddle_serving_server.serve --model output_inference/yolov3_darknet53_270e_coco/serving_server --op yolov3_darknet53_270e_coco --port 9997 &
|
||||
```
|
||||
如果需要自定义开发OP,请参考[文档](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/C%2B%2B_Serving/2%2B_model.md)进行开发
|
||||
|
||||
### 2.5 启动客户端访问
|
||||
当成功启动了模型预测服务,可以按如下命令启动客户端访问服务:
|
||||
```commandline
|
||||
python deploy/serving/python/serving_client.py --serving_client output_inference/yolov3_darknet53_270e_coco/serving_client --image_file demo/000000014439.jpg --http_port 9997
|
||||
```
|
||||
70
paddle_detection/deploy/serving/cpp/build_server.sh
Normal file
70
paddle_detection/deploy/serving/cpp/build_server.sh
Normal file
@@ -0,0 +1,70 @@
|
||||
#使用镜像:
|
||||
#registry.baidubce.com/paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82
|
||||
|
||||
#编译Serving Server:
|
||||
|
||||
#client和app可以直接使用release版本
|
||||
|
||||
#server因为加入了自定义OP,需要重新编译
|
||||
|
||||
apt-get update
|
||||
apt install -y libcurl4-openssl-dev libbz2-dev
|
||||
wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && tar xf centos_ssl.tar && rm -rf centos_ssl.tar && mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
|
||||
|
||||
# 安装go依赖
|
||||
rm -rf /usr/local/go
|
||||
wget -qO- https://paddle-ci.cdn.bcebos.com/go1.17.2.linux-amd64.tar.gz | tar -xz -C /usr/local
|
||||
export GOROOT=/usr/local/go
|
||||
export GOPATH=/root/gopath
|
||||
export PATH=$PATH:$GOPATH/bin:$GOROOT/bin
|
||||
go env -w GO111MODULE=on
|
||||
go env -w GOPROXY=https://goproxy.cn,direct
|
||||
go install github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway@v1.15.2
|
||||
go install github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger@v1.15.2
|
||||
go install github.com/golang/protobuf/protoc-gen-go@v1.4.3
|
||||
go install google.golang.org/grpc@v1.33.0
|
||||
go env -w GO111MODULE=auto
|
||||
|
||||
# 下载opencv库
|
||||
wget https://paddle-qa.bj.bcebos.com/PaddleServing/opencv3.tar.gz && tar -xvf opencv3.tar.gz && rm -rf opencv3.tar.gz
|
||||
export OPENCV_DIR=$PWD/opencv3
|
||||
|
||||
# clone Serving
|
||||
git clone https://github.com/PaddlePaddle/Serving.git -b develop --depth=1
|
||||
cd Serving
|
||||
export Serving_repo_path=$PWD
|
||||
git submodule update --init --recursive
|
||||
python -m pip install -r python/requirements.txt
|
||||
|
||||
# set env
|
||||
export PYTHON_INCLUDE_DIR=$(python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())")
|
||||
export PYTHON_LIBRARIES=$(python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))")
|
||||
export PYTHON_EXECUTABLE=`which python`
|
||||
|
||||
export CUDA_PATH='/usr/local/cuda'
|
||||
export CUDNN_LIBRARY='/usr/local/cuda/lib64/'
|
||||
export CUDA_CUDART_LIBRARY='/usr/local/cuda/lib64/'
|
||||
export TENSORRT_LIBRARY_PATH='/usr/local/TensorRT6-cuda10.1-cudnn7/targets/x86_64-linux-gnu/'
|
||||
|
||||
# cp 自定义OP代码
|
||||
\cp ../deploy/serving/cpp/preprocess/*.h ${Serving_repo_path}/core/general-server/op
|
||||
\cp ../deploy/serving/cpp/preprocess/*.cpp ${Serving_repo_path}/core/general-server/op
|
||||
|
||||
# 编译Server, export SERVING_BIN
|
||||
mkdir server-build-gpu-opencv && cd server-build-gpu-opencv
|
||||
cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR \
|
||||
-DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
|
||||
-DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
|
||||
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \
|
||||
-DCUDNN_LIBRARY=${CUDNN_LIBRARY} \
|
||||
-DCUDA_CUDART_LIBRARY=${CUDA_CUDART_LIBRARY} \
|
||||
-DTENSORRT_ROOT=${TENSORRT_LIBRARY_PATH} \
|
||||
-DOPENCV_DIR=${OPENCV_DIR} \
|
||||
-DWITH_OPENCV=ON \
|
||||
-DSERVER=ON \
|
||||
-DWITH_GPU=ON ..
|
||||
make -j32
|
||||
|
||||
python -m pip install python/dist/paddle*
|
||||
export SERVING_BIN=$PWD/core/general-server/serving
|
||||
cd ../../
|
||||
@@ -0,0 +1,309 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/mask_rcnn_r50_fpn_1x_coco.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int mask_rcnn_r50_fpn_1x_coco::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
Resize(&img, scale_factor_h, scale_factor_w, im_shape_h, im_shape_w);
|
||||
Normalize(&img, mean_, scale_, is_scale_);
|
||||
PadStride(&img, 32);
|
||||
int input_shape_h = img.rows;
|
||||
int input_shape_w = img.cols;
|
||||
std::vector<float> input(1 * 3 * input_shape_h * input_shape_w, 0.0f);
|
||||
Permute(img, input.data());
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// im_shape
|
||||
std::vector<float> im_shape{static_cast<float>(im_shape_h),
|
||||
static_cast<float>(im_shape_w)};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, im_shape.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_0;
|
||||
tensor_in_0.name = "im_shape";
|
||||
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_0.shape = {1, 2};
|
||||
tensor_in_0.lod = in->at(0).lod;
|
||||
tensor_in_0.data = paddleBuf_0;
|
||||
real_in->push_back(tensor_in_0);
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * input_shape_h * input_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_1;
|
||||
tensor_in_1.name = "image";
|
||||
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_1.shape = {1, 3, input_shape_h, input_shape_w};
|
||||
tensor_in_1.lod = in->at(0).lod;
|
||||
tensor_in_1.data = paddleBuf_1;
|
||||
real_in->push_back(tensor_in_1);
|
||||
|
||||
// scale_factor
|
||||
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, scale_factor.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_2;
|
||||
tensor_in_2.name = "scale_factor";
|
||||
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_2.shape = {1, 2};
|
||||
tensor_in_2.lod = in->at(0).lod;
|
||||
tensor_in_2.data = paddleBuf_2;
|
||||
real_in->push_back(tensor_in_2);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void mask_rcnn_r50_fpn_1x_coco::Resize(cv::Mat *img, float &scale_factor_h,
|
||||
float &scale_factor_w, int &im_shape_h,
|
||||
int &im_shape_w) {
|
||||
// keep_ratio
|
||||
int im_size_max = std::max(img->rows, img->cols);
|
||||
int im_size_min = std::min(img->rows, img->cols);
|
||||
int target_size_max = std::max(im_shape_h, im_shape_w);
|
||||
int target_size_min = std::min(im_shape_h, im_shape_w);
|
||||
float scale_min =
|
||||
static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
|
||||
float scale_max =
|
||||
static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
|
||||
float scale_ratio = std::min(scale_min, scale_max);
|
||||
|
||||
// scale_factor
|
||||
scale_factor_h = scale_ratio;
|
||||
scale_factor_w = scale_ratio;
|
||||
|
||||
// Resize
|
||||
cv::resize(*img, *img, cv::Size(), scale_ratio, scale_ratio, 2);
|
||||
im_shape_h = img->rows;
|
||||
im_shape_w = img->cols;
|
||||
}
|
||||
|
||||
void mask_rcnn_r50_fpn_1x_coco::Normalize(cv::Mat *img,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
(*img).convertTo(*img, CV_32FC3, e);
|
||||
for (int h = 0; h < img->rows; h++) {
|
||||
for (int w = 0; w < img->cols; w++) {
|
||||
img->at<cv::Vec3f>(h, w)[0] =
|
||||
(img->at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img->at<cv::Vec3f>(h, w)[1] =
|
||||
(img->at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img->at<cv::Vec3f>(h, w)[2] =
|
||||
(img->at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mask_rcnn_r50_fpn_1x_coco::PadStride(cv::Mat *img, int stride_) {
|
||||
// PadStride
|
||||
if (stride_ <= 0)
|
||||
return;
|
||||
int rh = img->rows;
|
||||
int rw = img->cols;
|
||||
int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
|
||||
int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
|
||||
cv::copyMakeBorder(*img, *img, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT,
|
||||
cv::Scalar(0));
|
||||
}
|
||||
|
||||
void mask_rcnn_r50_fpn_1x_coco::Permute(const cv::Mat &img, float *data) {
|
||||
// Permute
|
||||
int rh = img.rows;
|
||||
int rw = img.cols;
|
||||
int rc = img.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat mask_rcnn_r50_fpn_1x_coco::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string mask_rcnn_r50_fpn_1x_coco::base64Decode(const char *Data,
|
||||
int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(mask_rcnn_r50_fpn_1x_coco);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,72 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class mask_rcnn_r50_fpn_1x_coco
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(mask_rcnn_r50_fpn_1x_coco);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 1333;
|
||||
int im_shape_w = 800;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
|
||||
void Resize(cv::Mat *img, float &scale_factor_h, float &scale_factor_w,
|
||||
int &im_shape_h, int &im_shape_w);
|
||||
void Normalize(cv::Mat *img, const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
void PadStride(cv::Mat *img, int stride_ = -1);
|
||||
void Permute(const cv::Mat &img, float *data);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,258 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/picodet_lcnet_1_5x_416_coco.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int picodet_lcnet_1_5x_416_coco::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
|
||||
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
|
||||
im_shape_w, mean_, scale_, is_scale_);
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * im_shape_h * im_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in;
|
||||
tensor_in.name = "image";
|
||||
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
|
||||
tensor_in.lod = in->at(0).lod;
|
||||
tensor_in.data = paddleBuf;
|
||||
real_in->push_back(tensor_in);
|
||||
|
||||
// scale_factor
|
||||
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, scale_factor.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_2;
|
||||
tensor_in_2.name = "scale_factor";
|
||||
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_2.shape = {1, 2};
|
||||
tensor_in_2.lod = in->at(0).lod;
|
||||
tensor_in_2.data = paddleBuf_2;
|
||||
real_in->push_back(tensor_in_2);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void picodet_lcnet_1_5x_416_coco::preprocess_det(
|
||||
const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean, const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// scale_factor
|
||||
scale_factor_h =
|
||||
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
|
||||
scale_factor_w =
|
||||
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
|
||||
|
||||
// Resize
|
||||
cv::Mat resize_img;
|
||||
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
|
||||
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
cv::Mat img_fp;
|
||||
(resize_img).convertTo(img_fp, CV_32FC3, e);
|
||||
for (int h = 0; h < im_shape_h; h++) {
|
||||
for (int w = 0; w < im_shape_w; w++) {
|
||||
img_fp.at<cv::Vec3f>(h, w)[0] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img_fp.at<cv::Vec3f>(h, w)[1] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img_fp.at<cv::Vec3f>(h, w)[2] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
|
||||
// Permute
|
||||
int rh = img_fp.rows;
|
||||
int rw = img_fp.cols;
|
||||
int rc = img_fp.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
|
||||
i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat picodet_lcnet_1_5x_416_coco::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string picodet_lcnet_1_5x_416_coco::base64Decode(const char *Data,
|
||||
int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(picodet_lcnet_1_5x_416_coco);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,69 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class picodet_lcnet_1_5x_416_coco
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(picodet_lcnet_1_5x_416_coco);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 416;
|
||||
int im_shape_w = 416;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,282 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/ppyolo_mbv3_large_coco.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int ppyolo_mbv3_large_coco::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
|
||||
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
|
||||
im_shape_w, mean_, scale_, is_scale_);
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// im_shape
|
||||
std::vector<float> im_shape{static_cast<float>(im_shape_h),
|
||||
static_cast<float>(im_shape_w)};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, im_shape.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_0;
|
||||
tensor_in_0.name = "im_shape";
|
||||
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_0.shape = {1, 2};
|
||||
tensor_in_0.lod = in->at(0).lod;
|
||||
tensor_in_0.data = paddleBuf_0;
|
||||
real_in->push_back(tensor_in_0);
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * im_shape_h * im_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_1;
|
||||
tensor_in_1.name = "image";
|
||||
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_1.shape = {1, 3, im_shape_h, im_shape_w};
|
||||
tensor_in_1.lod = in->at(0).lod;
|
||||
tensor_in_1.data = paddleBuf_1;
|
||||
real_in->push_back(tensor_in_1);
|
||||
|
||||
// scale_factor
|
||||
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, scale_factor.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_2;
|
||||
tensor_in_2.name = "scale_factor";
|
||||
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_2.shape = {1, 2};
|
||||
tensor_in_2.lod = in->at(0).lod;
|
||||
tensor_in_2.data = paddleBuf_2;
|
||||
real_in->push_back(tensor_in_2);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void ppyolo_mbv3_large_coco::preprocess_det(const cv::Mat &img, float *data,
|
||||
float &scale_factor_h,
|
||||
float &scale_factor_w,
|
||||
int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// scale_factor
|
||||
scale_factor_h =
|
||||
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
|
||||
scale_factor_w =
|
||||
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
|
||||
|
||||
// Resize
|
||||
cv::Mat resize_img;
|
||||
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
|
||||
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
cv::Mat img_fp;
|
||||
(resize_img).convertTo(img_fp, CV_32FC3, e);
|
||||
for (int h = 0; h < im_shape_h; h++) {
|
||||
for (int w = 0; w < im_shape_w; w++) {
|
||||
img_fp.at<cv::Vec3f>(h, w)[0] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img_fp.at<cv::Vec3f>(h, w)[1] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img_fp.at<cv::Vec3f>(h, w)[2] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
|
||||
// Permute
|
||||
int rh = img_fp.rows;
|
||||
int rw = img_fp.cols;
|
||||
int rc = img_fp.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
|
||||
i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat ppyolo_mbv3_large_coco::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string ppyolo_mbv3_large_coco::base64Decode(const char *Data,
|
||||
int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(ppyolo_mbv3_large_coco);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,69 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class ppyolo_mbv3_large_coco
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(ppyolo_mbv3_large_coco);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 320;
|
||||
int im_shape_w = 320;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,260 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/ppyoloe_crn_s_300e_coco.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int ppyoloe_crn_s_300e_coco::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
|
||||
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
|
||||
im_shape_w, mean_, scale_, is_scale_);
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * im_shape_h * im_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in;
|
||||
tensor_in.name = "image";
|
||||
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
|
||||
tensor_in.lod = in->at(0).lod;
|
||||
tensor_in.data = paddleBuf;
|
||||
real_in->push_back(tensor_in);
|
||||
|
||||
// scale_factor
|
||||
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, scale_factor.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_2;
|
||||
tensor_in_2.name = "scale_factor";
|
||||
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_2.shape = {1, 2};
|
||||
tensor_in_2.lod = in->at(0).lod;
|
||||
tensor_in_2.data = paddleBuf_2;
|
||||
real_in->push_back(tensor_in_2);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void ppyoloe_crn_s_300e_coco::preprocess_det(const cv::Mat &img, float *data,
|
||||
float &scale_factor_h,
|
||||
float &scale_factor_w,
|
||||
int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// scale_factor
|
||||
scale_factor_h =
|
||||
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
|
||||
scale_factor_w =
|
||||
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
|
||||
|
||||
// Resize
|
||||
cv::Mat resize_img;
|
||||
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
|
||||
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
cv::Mat img_fp;
|
||||
(resize_img).convertTo(img_fp, CV_32FC3, e);
|
||||
for (int h = 0; h < im_shape_h; h++) {
|
||||
for (int w = 0; w < im_shape_w; w++) {
|
||||
img_fp.at<cv::Vec3f>(h, w)[0] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img_fp.at<cv::Vec3f>(h, w)[1] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img_fp.at<cv::Vec3f>(h, w)[2] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
|
||||
// Permute
|
||||
int rh = img_fp.rows;
|
||||
int rw = img_fp.cols;
|
||||
int rc = img_fp.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
|
||||
i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat ppyoloe_crn_s_300e_coco::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string ppyoloe_crn_s_300e_coco::base64Decode(const char *Data,
|
||||
int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(ppyoloe_crn_s_300e_coco);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,69 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class ppyoloe_crn_s_300e_coco
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(ppyoloe_crn_s_300e_coco);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 640;
|
||||
int im_shape_w = 640;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,232 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/tinypose_128x96.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int tinypose_128x96::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
|
||||
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
|
||||
im_shape_w, mean_, scale_, is_scale_);
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * im_shape_h * im_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in;
|
||||
tensor_in.name = "image";
|
||||
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
|
||||
tensor_in.lod = in->at(0).lod;
|
||||
tensor_in.data = paddleBuf;
|
||||
real_in->push_back(tensor_in);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void tinypose_128x96::preprocess_det(const cv::Mat &img, float *data,
|
||||
float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h,
|
||||
int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// Resize
|
||||
cv::Mat resize_img;
|
||||
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 1);
|
||||
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
cv::Mat img_fp;
|
||||
(resize_img).convertTo(img_fp, CV_32FC3, e);
|
||||
for (int h = 0; h < im_shape_h; h++) {
|
||||
for (int w = 0; w < im_shape_w; w++) {
|
||||
img_fp.at<cv::Vec3f>(h, w)[0] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img_fp.at<cv::Vec3f>(h, w)[1] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img_fp.at<cv::Vec3f>(h, w)[2] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
|
||||
// Permute
|
||||
int rh = img_fp.rows;
|
||||
int rw = img_fp.cols;
|
||||
int rc = img_fp.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
|
||||
i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat tinypose_128x96::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string tinypose_128x96::base64Decode(const char *Data, int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(tinypose_128x96);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,69 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class tinypose_128x96
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(tinypose_128x96);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 128;
|
||||
int im_shape_w = 96;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,282 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/yolov3_darknet53_270e_coco.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int yolov3_darknet53_270e_coco::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
|
||||
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
|
||||
im_shape_w, mean_, scale_, is_scale_);
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// im_shape
|
||||
std::vector<float> im_shape{static_cast<float>(im_shape_h),
|
||||
static_cast<float>(im_shape_w)};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, im_shape.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_0;
|
||||
tensor_in_0.name = "im_shape";
|
||||
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_0.shape = {1, 2};
|
||||
tensor_in_0.lod = in->at(0).lod;
|
||||
tensor_in_0.data = paddleBuf_0;
|
||||
real_in->push_back(tensor_in_0);
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * im_shape_h * im_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_1;
|
||||
tensor_in_1.name = "image";
|
||||
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_1.shape = {1, 3, im_shape_h, im_shape_w};
|
||||
tensor_in_1.lod = in->at(0).lod;
|
||||
tensor_in_1.data = paddleBuf_1;
|
||||
real_in->push_back(tensor_in_1);
|
||||
|
||||
// scale_factor
|
||||
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, scale_factor.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_2;
|
||||
tensor_in_2.name = "scale_factor";
|
||||
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_2.shape = {1, 2};
|
||||
tensor_in_2.lod = in->at(0).lod;
|
||||
tensor_in_2.data = paddleBuf_2;
|
||||
real_in->push_back(tensor_in_2);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void yolov3_darknet53_270e_coco::preprocess_det(const cv::Mat &img, float *data,
|
||||
float &scale_factor_h,
|
||||
float &scale_factor_w,
|
||||
int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// scale_factor
|
||||
scale_factor_h =
|
||||
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
|
||||
scale_factor_w =
|
||||
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
|
||||
|
||||
// Resize
|
||||
cv::Mat resize_img;
|
||||
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
|
||||
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
cv::Mat img_fp;
|
||||
(resize_img).convertTo(img_fp, CV_32FC3, e);
|
||||
for (int h = 0; h < im_shape_h; h++) {
|
||||
for (int w = 0; w < im_shape_w; w++) {
|
||||
img_fp.at<cv::Vec3f>(h, w)[0] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img_fp.at<cv::Vec3f>(h, w)[1] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img_fp.at<cv::Vec3f>(h, w)[2] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
|
||||
// Permute
|
||||
int rh = img_fp.rows;
|
||||
int rw = img_fp.cols;
|
||||
int rc = img_fp.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
|
||||
i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat yolov3_darknet53_270e_coco::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string yolov3_darknet53_270e_coco::base64Decode(const char *Data,
|
||||
int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(yolov3_darknet53_270e_coco);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,69 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class yolov3_darknet53_270e_coco
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(yolov3_darknet53_270e_coco);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 608;
|
||||
int im_shape_w = 608;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
125
paddle_detection/deploy/serving/cpp/serving_client.py
Normal file
125
paddle_detection/deploy/serving/cpp/serving_client.py
Normal file
@@ -0,0 +1,125 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import glob
|
||||
import base64
|
||||
import argparse
|
||||
from paddle_serving_client import Client
|
||||
from paddle_serving_client.proto import general_model_config_pb2 as m_config
|
||||
import google.protobuf.text_format
|
||||
|
||||
parser = argparse.ArgumentParser(description="args for paddleserving")
|
||||
parser.add_argument(
|
||||
"--serving_client", type=str, help="the directory of serving_client")
|
||||
parser.add_argument("--image_dir", type=str)
|
||||
parser.add_argument("--image_file", type=str)
|
||||
parser.add_argument("--http_port", type=int, default=9997)
|
||||
parser.add_argument(
|
||||
"--threshold", type=float, default=0.5, help="Threshold of score.")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def get_test_images(infer_dir, infer_img):
|
||||
"""
|
||||
Get image path list in TEST mode
|
||||
"""
|
||||
assert infer_img is not None or infer_dir is not None, \
|
||||
"--image_file or --image_dir should be set"
|
||||
assert infer_img is None or os.path.isfile(infer_img), \
|
||||
"{} is not a file".format(infer_img)
|
||||
assert infer_dir is None or os.path.isdir(infer_dir), \
|
||||
"{} is not a directory".format(infer_dir)
|
||||
|
||||
# infer_img has a higher priority
|
||||
if infer_img and os.path.isfile(infer_img):
|
||||
return [infer_img]
|
||||
|
||||
images = set()
|
||||
infer_dir = os.path.abspath(infer_dir)
|
||||
assert os.path.isdir(infer_dir), \
|
||||
"infer_dir {} is not a directory".format(infer_dir)
|
||||
exts = ['jpg', 'jpeg', 'png', 'bmp']
|
||||
exts += [ext.upper() for ext in exts]
|
||||
for ext in exts:
|
||||
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
|
||||
images = list(images)
|
||||
|
||||
assert len(images) > 0, "no image found in {}".format(infer_dir)
|
||||
print("Found {} inference images in total.".format(len(images)))
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def postprocess(fetch_dict, fetch_vars, draw_threshold=0.5):
|
||||
result = []
|
||||
if "conv2d_441.tmp_1" in fetch_dict:
|
||||
heatmap = fetch_dict["conv2d_441.tmp_1"]
|
||||
print(heatmap)
|
||||
result.append(heatmap)
|
||||
else:
|
||||
bboxes = fetch_dict[fetch_vars[0]]
|
||||
for bbox in bboxes:
|
||||
if bbox[0] > -1 and bbox[1] > draw_threshold:
|
||||
print(f"{int(bbox[0])} {bbox[1]} "
|
||||
f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
|
||||
result.append(f"{int(bbox[0])} {bbox[1]} "
|
||||
f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
|
||||
return result
|
||||
|
||||
|
||||
def get_model_vars(client_config_dir):
|
||||
# read original serving_client_conf.prototxt
|
||||
client_config_file = os.path.join(client_config_dir,
|
||||
"serving_client_conf.prototxt")
|
||||
with open(client_config_file, 'r') as f:
|
||||
model_var = google.protobuf.text_format.Merge(
|
||||
str(f.read()), m_config.GeneralModelConfig())
|
||||
# modify feed_var to run core/general-server/op/
|
||||
[model_var.feed_var.pop() for _ in range(len(model_var.feed_var))]
|
||||
feed_var = m_config.FeedVar()
|
||||
feed_var.name = "input"
|
||||
feed_var.alias_name = "input"
|
||||
feed_var.is_lod_tensor = False
|
||||
feed_var.feed_type = 20
|
||||
feed_var.shape.extend([1])
|
||||
model_var.feed_var.extend([feed_var])
|
||||
with open(
|
||||
os.path.join(client_config_dir, "serving_client_conf_cpp.prototxt"),
|
||||
"w") as f:
|
||||
f.write(str(model_var))
|
||||
# get feed_vars/fetch_vars
|
||||
feed_vars = [var.name for var in model_var.feed_var]
|
||||
fetch_vars = [var.name for var in model_var.fetch_var]
|
||||
return feed_vars, fetch_vars
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
url = f"127.0.0.1:{args.http_port}"
|
||||
logid = 10000
|
||||
img_list = get_test_images(args.image_dir, args.image_file)
|
||||
feed_vars, fetch_vars = get_model_vars(args.serving_client)
|
||||
|
||||
client = Client()
|
||||
client.load_client_config(
|
||||
os.path.join(args.serving_client, "serving_client_conf_cpp.prototxt"))
|
||||
client.connect([url])
|
||||
|
||||
for img_file in img_list:
|
||||
with open(img_file, 'rb') as file:
|
||||
image_data = file.read()
|
||||
image = base64.b64encode(image_data).decode('utf8')
|
||||
fetch_dict = client.predict(
|
||||
feed={feed_vars[0]: image}, fetch=fetch_vars)
|
||||
result = postprocess(fetch_dict, fetch_vars, args.threshold)
|
||||
@@ -0,0 +1,20 @@
|
||||
feed_var {
|
||||
name: "input"
|
||||
alias_name: "input"
|
||||
is_lod_tensor: false
|
||||
feed_type: 20
|
||||
shape: 1
|
||||
}
|
||||
fetch_var {
|
||||
name: "multiclass_nms3_0.tmp_0"
|
||||
alias_name: "multiclass_nms3_0.tmp_0"
|
||||
is_lod_tensor: true
|
||||
fetch_type: 1
|
||||
shape: -1
|
||||
}
|
||||
fetch_var {
|
||||
name: "multiclass_nms3_0.tmp_2"
|
||||
alias_name: "multiclass_nms3_0.tmp_2"
|
||||
is_lod_tensor: false
|
||||
fetch_type: 2
|
||||
}
|
||||
Reference in New Issue
Block a user