更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,309 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/mask_rcnn_r50_fpn_1x_coco.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int mask_rcnn_r50_fpn_1x_coco::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
Resize(&img, scale_factor_h, scale_factor_w, im_shape_h, im_shape_w);
Normalize(&img, mean_, scale_, is_scale_);
PadStride(&img, 32);
int input_shape_h = img.rows;
int input_shape_w = img.cols;
std::vector<float> input(1 * 3 * input_shape_h * input_shape_w, 0.0f);
Permute(img, input.data());
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// im_shape
std::vector<float> im_shape{static_cast<float>(im_shape_h),
static_cast<float>(im_shape_w)};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, im_shape.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_0;
tensor_in_0.name = "im_shape";
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_0.shape = {1, 2};
tensor_in_0.lod = in->at(0).lod;
tensor_in_0.data = paddleBuf_0;
real_in->push_back(tensor_in_0);
// image
in_num = 1 * 3 * input_shape_h * input_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_1;
tensor_in_1.name = "image";
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_1.shape = {1, 3, input_shape_h, input_shape_w};
tensor_in_1.lod = in->at(0).lod;
tensor_in_1.data = paddleBuf_1;
real_in->push_back(tensor_in_1);
// scale_factor
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, scale_factor.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_2;
tensor_in_2.name = "scale_factor";
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_2.shape = {1, 2};
tensor_in_2.lod = in->at(0).lod;
tensor_in_2.data = paddleBuf_2;
real_in->push_back(tensor_in_2);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void mask_rcnn_r50_fpn_1x_coco::Resize(cv::Mat *img, float &scale_factor_h,
float &scale_factor_w, int &im_shape_h,
int &im_shape_w) {
// keep_ratio
int im_size_max = std::max(img->rows, img->cols);
int im_size_min = std::min(img->rows, img->cols);
int target_size_max = std::max(im_shape_h, im_shape_w);
int target_size_min = std::min(im_shape_h, im_shape_w);
float scale_min =
static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
float scale_max =
static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
float scale_ratio = std::min(scale_min, scale_max);
// scale_factor
scale_factor_h = scale_ratio;
scale_factor_w = scale_ratio;
// Resize
cv::resize(*img, *img, cv::Size(), scale_ratio, scale_ratio, 2);
im_shape_h = img->rows;
im_shape_w = img->cols;
}
void mask_rcnn_r50_fpn_1x_coco::Normalize(cv::Mat *img,
const std::vector<float> &mean,
const std::vector<float> &scale,
const bool is_scale) {
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
(*img).convertTo(*img, CV_32FC3, e);
for (int h = 0; h < img->rows; h++) {
for (int w = 0; w < img->cols; w++) {
img->at<cv::Vec3f>(h, w)[0] =
(img->at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img->at<cv::Vec3f>(h, w)[1] =
(img->at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img->at<cv::Vec3f>(h, w)[2] =
(img->at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
}
void mask_rcnn_r50_fpn_1x_coco::PadStride(cv::Mat *img, int stride_) {
// PadStride
if (stride_ <= 0)
return;
int rh = img->rows;
int rw = img->cols;
int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
cv::copyMakeBorder(*img, *img, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT,
cv::Scalar(0));
}
void mask_rcnn_r50_fpn_1x_coco::Permute(const cv::Mat &img, float *data) {
// Permute
int rh = img.rows;
int rw = img.cols;
int rc = img.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
}
}
cv::Mat mask_rcnn_r50_fpn_1x_coco::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string mask_rcnn_r50_fpn_1x_coco::base64Decode(const char *Data,
int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(mask_rcnn_r50_fpn_1x_coco);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,72 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class mask_rcnn_r50_fpn_1x_coco
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(mask_rcnn_r50_fpn_1x_coco);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 1333;
int im_shape_w = 800;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void Resize(cv::Mat *img, float &scale_factor_h, float &scale_factor_w,
int &im_shape_h, int &im_shape_w);
void Normalize(cv::Mat *img, const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
void PadStride(cv::Mat *img, int stride_ = -1);
void Permute(const cv::Mat &img, float *data);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,258 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/picodet_lcnet_1_5x_416_coco.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int picodet_lcnet_1_5x_416_coco::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
im_shape_w, mean_, scale_, is_scale_);
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// image
in_num = 1 * 3 * im_shape_h * im_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in;
tensor_in.name = "image";
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
tensor_in.lod = in->at(0).lod;
tensor_in.data = paddleBuf;
real_in->push_back(tensor_in);
// scale_factor
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, scale_factor.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_2;
tensor_in_2.name = "scale_factor";
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_2.shape = {1, 2};
tensor_in_2.lod = in->at(0).lod;
tensor_in_2.data = paddleBuf_2;
real_in->push_back(tensor_in_2);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void picodet_lcnet_1_5x_416_coco::preprocess_det(
const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean, const std::vector<float> &scale,
const bool is_scale) {
// scale_factor
scale_factor_h =
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
scale_factor_w =
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
// Resize
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
cv::Mat img_fp;
(resize_img).convertTo(img_fp, CV_32FC3, e);
for (int h = 0; h < im_shape_h; h++) {
for (int w = 0; w < im_shape_w; w++) {
img_fp.at<cv::Vec3f>(h, w)[0] =
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img_fp.at<cv::Vec3f>(h, w)[1] =
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img_fp.at<cv::Vec3f>(h, w)[2] =
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
// Permute
int rh = img_fp.rows;
int rw = img_fp.cols;
int rc = img_fp.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
i);
}
}
cv::Mat picodet_lcnet_1_5x_416_coco::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string picodet_lcnet_1_5x_416_coco::base64Decode(const char *Data,
int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(picodet_lcnet_1_5x_416_coco);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class picodet_lcnet_1_5x_416_coco
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(picodet_lcnet_1_5x_416_coco);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 416;
int im_shape_w = 416;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,282 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/ppyolo_mbv3_large_coco.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int ppyolo_mbv3_large_coco::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
im_shape_w, mean_, scale_, is_scale_);
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// im_shape
std::vector<float> im_shape{static_cast<float>(im_shape_h),
static_cast<float>(im_shape_w)};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, im_shape.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_0;
tensor_in_0.name = "im_shape";
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_0.shape = {1, 2};
tensor_in_0.lod = in->at(0).lod;
tensor_in_0.data = paddleBuf_0;
real_in->push_back(tensor_in_0);
// image
in_num = 1 * 3 * im_shape_h * im_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_1;
tensor_in_1.name = "image";
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_1.shape = {1, 3, im_shape_h, im_shape_w};
tensor_in_1.lod = in->at(0).lod;
tensor_in_1.data = paddleBuf_1;
real_in->push_back(tensor_in_1);
// scale_factor
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, scale_factor.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_2;
tensor_in_2.name = "scale_factor";
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_2.shape = {1, 2};
tensor_in_2.lod = in->at(0).lod;
tensor_in_2.data = paddleBuf_2;
real_in->push_back(tensor_in_2);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void ppyolo_mbv3_large_coco::preprocess_det(const cv::Mat &img, float *data,
float &scale_factor_h,
float &scale_factor_w,
int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale,
const bool is_scale) {
// scale_factor
scale_factor_h =
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
scale_factor_w =
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
// Resize
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
cv::Mat img_fp;
(resize_img).convertTo(img_fp, CV_32FC3, e);
for (int h = 0; h < im_shape_h; h++) {
for (int w = 0; w < im_shape_w; w++) {
img_fp.at<cv::Vec3f>(h, w)[0] =
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img_fp.at<cv::Vec3f>(h, w)[1] =
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img_fp.at<cv::Vec3f>(h, w)[2] =
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
// Permute
int rh = img_fp.rows;
int rw = img_fp.cols;
int rc = img_fp.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
i);
}
}
cv::Mat ppyolo_mbv3_large_coco::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string ppyolo_mbv3_large_coco::base64Decode(const char *Data,
int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(ppyolo_mbv3_large_coco);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class ppyolo_mbv3_large_coco
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(ppyolo_mbv3_large_coco);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 320;
int im_shape_w = 320;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,260 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/ppyoloe_crn_s_300e_coco.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int ppyoloe_crn_s_300e_coco::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
im_shape_w, mean_, scale_, is_scale_);
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// image
in_num = 1 * 3 * im_shape_h * im_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in;
tensor_in.name = "image";
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
tensor_in.lod = in->at(0).lod;
tensor_in.data = paddleBuf;
real_in->push_back(tensor_in);
// scale_factor
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, scale_factor.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_2;
tensor_in_2.name = "scale_factor";
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_2.shape = {1, 2};
tensor_in_2.lod = in->at(0).lod;
tensor_in_2.data = paddleBuf_2;
real_in->push_back(tensor_in_2);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void ppyoloe_crn_s_300e_coco::preprocess_det(const cv::Mat &img, float *data,
float &scale_factor_h,
float &scale_factor_w,
int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale,
const bool is_scale) {
// scale_factor
scale_factor_h =
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
scale_factor_w =
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
// Resize
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
cv::Mat img_fp;
(resize_img).convertTo(img_fp, CV_32FC3, e);
for (int h = 0; h < im_shape_h; h++) {
for (int w = 0; w < im_shape_w; w++) {
img_fp.at<cv::Vec3f>(h, w)[0] =
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img_fp.at<cv::Vec3f>(h, w)[1] =
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img_fp.at<cv::Vec3f>(h, w)[2] =
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
// Permute
int rh = img_fp.rows;
int rw = img_fp.cols;
int rc = img_fp.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
i);
}
}
cv::Mat ppyoloe_crn_s_300e_coco::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string ppyoloe_crn_s_300e_coco::base64Decode(const char *Data,
int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(ppyoloe_crn_s_300e_coco);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class ppyoloe_crn_s_300e_coco
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(ppyoloe_crn_s_300e_coco);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 640;
int im_shape_w = 640;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,232 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/tinypose_128x96.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int tinypose_128x96::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
im_shape_w, mean_, scale_, is_scale_);
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// image
in_num = 1 * 3 * im_shape_h * im_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in;
tensor_in.name = "image";
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
tensor_in.lod = in->at(0).lod;
tensor_in.data = paddleBuf;
real_in->push_back(tensor_in);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void tinypose_128x96::preprocess_det(const cv::Mat &img, float *data,
float &scale_factor_h,
float &scale_factor_w, int im_shape_h,
int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale,
const bool is_scale) {
// Resize
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 1);
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
cv::Mat img_fp;
(resize_img).convertTo(img_fp, CV_32FC3, e);
for (int h = 0; h < im_shape_h; h++) {
for (int w = 0; w < im_shape_w; w++) {
img_fp.at<cv::Vec3f>(h, w)[0] =
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img_fp.at<cv::Vec3f>(h, w)[1] =
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img_fp.at<cv::Vec3f>(h, w)[2] =
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
// Permute
int rh = img_fp.rows;
int rw = img_fp.cols;
int rc = img_fp.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
i);
}
}
cv::Mat tinypose_128x96::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string tinypose_128x96::base64Decode(const char *Data, int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(tinypose_128x96);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class tinypose_128x96
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(tinypose_128x96);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 128;
int im_shape_w = 96;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,282 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/yolov3_darknet53_270e_coco.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
int yolov3_darknet53_270e_coco::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
}
output_blob->SetLogId(log_id);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// only support string type
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
std::string base64str = total_input_ptr;
cv::Mat img = Base2Mat(base64str);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
// preprocess
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
im_shape_w, mean_, scale_, is_scale_);
// create real_in
TensorVector *real_in = new TensorVector();
if (!real_in) {
LOG(ERROR) << "real_in is nullptr,error";
return -1;
}
int in_num = 0;
size_t databuf_size = 0;
void *databuf_data = NULL;
char *databuf_char = NULL;
// im_shape
std::vector<float> im_shape{static_cast<float>(im_shape_h),
static_cast<float>(im_shape_w)};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, im_shape.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_0;
tensor_in_0.name = "im_shape";
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_0.shape = {1, 2};
tensor_in_0.lod = in->at(0).lod;
tensor_in_0.data = paddleBuf_0;
real_in->push_back(tensor_in_0);
// image
in_num = 1 * 3 * im_shape_h * im_shape_w;
databuf_size = in_num * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, input.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_1;
tensor_in_1.name = "image";
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_1.shape = {1, 3, im_shape_h, im_shape_w};
tensor_in_1.lod = in->at(0).lod;
tensor_in_1.data = paddleBuf_1;
real_in->push_back(tensor_in_1);
// scale_factor
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
databuf_size = 2 * sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) {
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
return -1;
}
memcpy(databuf_data, scale_factor.data(), databuf_size);
databuf_char = reinterpret_cast<char *>(databuf_data);
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
paddle::PaddleTensor tensor_in_2;
tensor_in_2.name = "scale_factor";
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
tensor_in_2.shape = {1, 2};
tensor_in_2.lod = in->at(0).lod;
tensor_in_2.data = paddleBuf_2;
real_in->push_back(tensor_in_2);
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
batch_size)) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
void yolov3_darknet53_270e_coco::preprocess_det(const cv::Mat &img, float *data,
float &scale_factor_h,
float &scale_factor_w,
int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale,
const bool is_scale) {
// scale_factor
scale_factor_h =
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
scale_factor_w =
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
// Resize
cv::Mat resize_img;
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
// Normalize
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
cv::Mat img_fp;
(resize_img).convertTo(img_fp, CV_32FC3, e);
for (int h = 0; h < im_shape_h; h++) {
for (int w = 0; w < im_shape_w; w++) {
img_fp.at<cv::Vec3f>(h, w)[0] =
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
img_fp.at<cv::Vec3f>(h, w)[1] =
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
img_fp.at<cv::Vec3f>(h, w)[2] =
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
}
}
// Permute
int rh = img_fp.rows;
int rw = img_fp.cols;
int rc = img_fp.channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
i);
}
}
cv::Mat yolov3_darknet53_270e_coco::Base2Mat(std::string &base64_data) {
cv::Mat img;
std::string s_mat;
s_mat = base64Decode(base64_data.data(), base64_data.size());
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
return img;
}
std::string yolov3_darknet53_270e_coco::base64Decode(const char *Data,
int DataByte) {
const char DecodeTable[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
62, // '+'
0, 0, 0,
63, // '/'
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
};
std::string strDecode;
int nValue;
int i = 0;
while (i < DataByte) {
if (*Data != '\r' && *Data != '\n') {
nValue = DecodeTable[*Data++] << 18;
nValue += DecodeTable[*Data++] << 12;
strDecode += (nValue & 0x00FF0000) >> 16;
if (*Data != '=') {
nValue += DecodeTable[*Data++] << 6;
strDecode += (nValue & 0x0000FF00) >> 8;
if (*Data != '=') {
nValue += DecodeTable[*Data++];
strDecode += nValue & 0x000000FF;
}
}
i += 4;
} else // 回车换行,跳过
{
Data++;
i++;
}
}
return strDecode;
}
DEFINE_OP(yolov3_darknet53_270e_coco);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu

View File

@@ -0,0 +1,69 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
#include <string>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
namespace baidu {
namespace paddle_serving {
namespace serving {
class yolov3_darknet53_270e_coco
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(yolov3_darknet53_270e_coco);
int inference();
private:
// preprocess
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
bool is_scale_ = true;
int im_shape_h = 608;
int im_shape_w = 608;
float scale_factor_h = 1.0f;
float scale_factor_w = 1.0f;
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
float &scale_factor_w, int im_shape_h, int im_shape_w,
const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale);
// read pics
cv::Mat Base2Mat(std::string &base64_data);
std::string base64Decode(const char *Data, int DataByte);
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu