更换文档检测模型
This commit is contained in:
@@ -0,0 +1,309 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/mask_rcnn_r50_fpn_1x_coco.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int mask_rcnn_r50_fpn_1x_coco::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
Resize(&img, scale_factor_h, scale_factor_w, im_shape_h, im_shape_w);
|
||||
Normalize(&img, mean_, scale_, is_scale_);
|
||||
PadStride(&img, 32);
|
||||
int input_shape_h = img.rows;
|
||||
int input_shape_w = img.cols;
|
||||
std::vector<float> input(1 * 3 * input_shape_h * input_shape_w, 0.0f);
|
||||
Permute(img, input.data());
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// im_shape
|
||||
std::vector<float> im_shape{static_cast<float>(im_shape_h),
|
||||
static_cast<float>(im_shape_w)};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, im_shape.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_0;
|
||||
tensor_in_0.name = "im_shape";
|
||||
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_0.shape = {1, 2};
|
||||
tensor_in_0.lod = in->at(0).lod;
|
||||
tensor_in_0.data = paddleBuf_0;
|
||||
real_in->push_back(tensor_in_0);
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * input_shape_h * input_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_1;
|
||||
tensor_in_1.name = "image";
|
||||
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_1.shape = {1, 3, input_shape_h, input_shape_w};
|
||||
tensor_in_1.lod = in->at(0).lod;
|
||||
tensor_in_1.data = paddleBuf_1;
|
||||
real_in->push_back(tensor_in_1);
|
||||
|
||||
// scale_factor
|
||||
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, scale_factor.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_2;
|
||||
tensor_in_2.name = "scale_factor";
|
||||
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_2.shape = {1, 2};
|
||||
tensor_in_2.lod = in->at(0).lod;
|
||||
tensor_in_2.data = paddleBuf_2;
|
||||
real_in->push_back(tensor_in_2);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void mask_rcnn_r50_fpn_1x_coco::Resize(cv::Mat *img, float &scale_factor_h,
|
||||
float &scale_factor_w, int &im_shape_h,
|
||||
int &im_shape_w) {
|
||||
// keep_ratio
|
||||
int im_size_max = std::max(img->rows, img->cols);
|
||||
int im_size_min = std::min(img->rows, img->cols);
|
||||
int target_size_max = std::max(im_shape_h, im_shape_w);
|
||||
int target_size_min = std::min(im_shape_h, im_shape_w);
|
||||
float scale_min =
|
||||
static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
|
||||
float scale_max =
|
||||
static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
|
||||
float scale_ratio = std::min(scale_min, scale_max);
|
||||
|
||||
// scale_factor
|
||||
scale_factor_h = scale_ratio;
|
||||
scale_factor_w = scale_ratio;
|
||||
|
||||
// Resize
|
||||
cv::resize(*img, *img, cv::Size(), scale_ratio, scale_ratio, 2);
|
||||
im_shape_h = img->rows;
|
||||
im_shape_w = img->cols;
|
||||
}
|
||||
|
||||
void mask_rcnn_r50_fpn_1x_coco::Normalize(cv::Mat *img,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
(*img).convertTo(*img, CV_32FC3, e);
|
||||
for (int h = 0; h < img->rows; h++) {
|
||||
for (int w = 0; w < img->cols; w++) {
|
||||
img->at<cv::Vec3f>(h, w)[0] =
|
||||
(img->at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img->at<cv::Vec3f>(h, w)[1] =
|
||||
(img->at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img->at<cv::Vec3f>(h, w)[2] =
|
||||
(img->at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mask_rcnn_r50_fpn_1x_coco::PadStride(cv::Mat *img, int stride_) {
|
||||
// PadStride
|
||||
if (stride_ <= 0)
|
||||
return;
|
||||
int rh = img->rows;
|
||||
int rw = img->cols;
|
||||
int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
|
||||
int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
|
||||
cv::copyMakeBorder(*img, *img, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT,
|
||||
cv::Scalar(0));
|
||||
}
|
||||
|
||||
void mask_rcnn_r50_fpn_1x_coco::Permute(const cv::Mat &img, float *data) {
|
||||
// Permute
|
||||
int rh = img.rows;
|
||||
int rw = img.cols;
|
||||
int rc = img.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat mask_rcnn_r50_fpn_1x_coco::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string mask_rcnn_r50_fpn_1x_coco::base64Decode(const char *Data,
|
||||
int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(mask_rcnn_r50_fpn_1x_coco);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,72 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class mask_rcnn_r50_fpn_1x_coco
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(mask_rcnn_r50_fpn_1x_coco);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 1333;
|
||||
int im_shape_w = 800;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
|
||||
void Resize(cv::Mat *img, float &scale_factor_h, float &scale_factor_w,
|
||||
int &im_shape_h, int &im_shape_w);
|
||||
void Normalize(cv::Mat *img, const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
void PadStride(cv::Mat *img, int stride_ = -1);
|
||||
void Permute(const cv::Mat &img, float *data);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,258 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/picodet_lcnet_1_5x_416_coco.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int picodet_lcnet_1_5x_416_coco::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
|
||||
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
|
||||
im_shape_w, mean_, scale_, is_scale_);
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * im_shape_h * im_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in;
|
||||
tensor_in.name = "image";
|
||||
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
|
||||
tensor_in.lod = in->at(0).lod;
|
||||
tensor_in.data = paddleBuf;
|
||||
real_in->push_back(tensor_in);
|
||||
|
||||
// scale_factor
|
||||
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, scale_factor.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_2;
|
||||
tensor_in_2.name = "scale_factor";
|
||||
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_2.shape = {1, 2};
|
||||
tensor_in_2.lod = in->at(0).lod;
|
||||
tensor_in_2.data = paddleBuf_2;
|
||||
real_in->push_back(tensor_in_2);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void picodet_lcnet_1_5x_416_coco::preprocess_det(
|
||||
const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean, const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// scale_factor
|
||||
scale_factor_h =
|
||||
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
|
||||
scale_factor_w =
|
||||
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
|
||||
|
||||
// Resize
|
||||
cv::Mat resize_img;
|
||||
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
|
||||
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
cv::Mat img_fp;
|
||||
(resize_img).convertTo(img_fp, CV_32FC3, e);
|
||||
for (int h = 0; h < im_shape_h; h++) {
|
||||
for (int w = 0; w < im_shape_w; w++) {
|
||||
img_fp.at<cv::Vec3f>(h, w)[0] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img_fp.at<cv::Vec3f>(h, w)[1] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img_fp.at<cv::Vec3f>(h, w)[2] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
|
||||
// Permute
|
||||
int rh = img_fp.rows;
|
||||
int rw = img_fp.cols;
|
||||
int rc = img_fp.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
|
||||
i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat picodet_lcnet_1_5x_416_coco::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string picodet_lcnet_1_5x_416_coco::base64Decode(const char *Data,
|
||||
int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(picodet_lcnet_1_5x_416_coco);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,69 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class picodet_lcnet_1_5x_416_coco
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(picodet_lcnet_1_5x_416_coco);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 416;
|
||||
int im_shape_w = 416;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,282 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/ppyolo_mbv3_large_coco.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int ppyolo_mbv3_large_coco::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
|
||||
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
|
||||
im_shape_w, mean_, scale_, is_scale_);
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// im_shape
|
||||
std::vector<float> im_shape{static_cast<float>(im_shape_h),
|
||||
static_cast<float>(im_shape_w)};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, im_shape.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_0;
|
||||
tensor_in_0.name = "im_shape";
|
||||
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_0.shape = {1, 2};
|
||||
tensor_in_0.lod = in->at(0).lod;
|
||||
tensor_in_0.data = paddleBuf_0;
|
||||
real_in->push_back(tensor_in_0);
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * im_shape_h * im_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_1;
|
||||
tensor_in_1.name = "image";
|
||||
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_1.shape = {1, 3, im_shape_h, im_shape_w};
|
||||
tensor_in_1.lod = in->at(0).lod;
|
||||
tensor_in_1.data = paddleBuf_1;
|
||||
real_in->push_back(tensor_in_1);
|
||||
|
||||
// scale_factor
|
||||
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, scale_factor.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_2;
|
||||
tensor_in_2.name = "scale_factor";
|
||||
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_2.shape = {1, 2};
|
||||
tensor_in_2.lod = in->at(0).lod;
|
||||
tensor_in_2.data = paddleBuf_2;
|
||||
real_in->push_back(tensor_in_2);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void ppyolo_mbv3_large_coco::preprocess_det(const cv::Mat &img, float *data,
|
||||
float &scale_factor_h,
|
||||
float &scale_factor_w,
|
||||
int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// scale_factor
|
||||
scale_factor_h =
|
||||
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
|
||||
scale_factor_w =
|
||||
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
|
||||
|
||||
// Resize
|
||||
cv::Mat resize_img;
|
||||
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
|
||||
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
cv::Mat img_fp;
|
||||
(resize_img).convertTo(img_fp, CV_32FC3, e);
|
||||
for (int h = 0; h < im_shape_h; h++) {
|
||||
for (int w = 0; w < im_shape_w; w++) {
|
||||
img_fp.at<cv::Vec3f>(h, w)[0] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img_fp.at<cv::Vec3f>(h, w)[1] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img_fp.at<cv::Vec3f>(h, w)[2] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
|
||||
// Permute
|
||||
int rh = img_fp.rows;
|
||||
int rw = img_fp.cols;
|
||||
int rc = img_fp.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
|
||||
i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat ppyolo_mbv3_large_coco::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string ppyolo_mbv3_large_coco::base64Decode(const char *Data,
|
||||
int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(ppyolo_mbv3_large_coco);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,69 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class ppyolo_mbv3_large_coco
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(ppyolo_mbv3_large_coco);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 320;
|
||||
int im_shape_w = 320;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,260 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/ppyoloe_crn_s_300e_coco.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int ppyoloe_crn_s_300e_coco::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
|
||||
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
|
||||
im_shape_w, mean_, scale_, is_scale_);
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * im_shape_h * im_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in;
|
||||
tensor_in.name = "image";
|
||||
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
|
||||
tensor_in.lod = in->at(0).lod;
|
||||
tensor_in.data = paddleBuf;
|
||||
real_in->push_back(tensor_in);
|
||||
|
||||
// scale_factor
|
||||
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, scale_factor.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_2;
|
||||
tensor_in_2.name = "scale_factor";
|
||||
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_2.shape = {1, 2};
|
||||
tensor_in_2.lod = in->at(0).lod;
|
||||
tensor_in_2.data = paddleBuf_2;
|
||||
real_in->push_back(tensor_in_2);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void ppyoloe_crn_s_300e_coco::preprocess_det(const cv::Mat &img, float *data,
|
||||
float &scale_factor_h,
|
||||
float &scale_factor_w,
|
||||
int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// scale_factor
|
||||
scale_factor_h =
|
||||
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
|
||||
scale_factor_w =
|
||||
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
|
||||
|
||||
// Resize
|
||||
cv::Mat resize_img;
|
||||
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
|
||||
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
cv::Mat img_fp;
|
||||
(resize_img).convertTo(img_fp, CV_32FC3, e);
|
||||
for (int h = 0; h < im_shape_h; h++) {
|
||||
for (int w = 0; w < im_shape_w; w++) {
|
||||
img_fp.at<cv::Vec3f>(h, w)[0] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img_fp.at<cv::Vec3f>(h, w)[1] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img_fp.at<cv::Vec3f>(h, w)[2] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
|
||||
// Permute
|
||||
int rh = img_fp.rows;
|
||||
int rw = img_fp.cols;
|
||||
int rc = img_fp.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
|
||||
i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat ppyoloe_crn_s_300e_coco::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string ppyoloe_crn_s_300e_coco::base64Decode(const char *Data,
|
||||
int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(ppyoloe_crn_s_300e_coco);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,69 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class ppyoloe_crn_s_300e_coco
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(ppyoloe_crn_s_300e_coco);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 640;
|
||||
int im_shape_w = 640;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,232 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/tinypose_128x96.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int tinypose_128x96::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
|
||||
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
|
||||
im_shape_w, mean_, scale_, is_scale_);
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * im_shape_h * im_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in;
|
||||
tensor_in.name = "image";
|
||||
tensor_in.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
|
||||
tensor_in.lod = in->at(0).lod;
|
||||
tensor_in.data = paddleBuf;
|
||||
real_in->push_back(tensor_in);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void tinypose_128x96::preprocess_det(const cv::Mat &img, float *data,
|
||||
float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h,
|
||||
int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// Resize
|
||||
cv::Mat resize_img;
|
||||
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 1);
|
||||
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
cv::Mat img_fp;
|
||||
(resize_img).convertTo(img_fp, CV_32FC3, e);
|
||||
for (int h = 0; h < im_shape_h; h++) {
|
||||
for (int w = 0; w < im_shape_w; w++) {
|
||||
img_fp.at<cv::Vec3f>(h, w)[0] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img_fp.at<cv::Vec3f>(h, w)[1] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img_fp.at<cv::Vec3f>(h, w)[2] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
|
||||
// Permute
|
||||
int rh = img_fp.rows;
|
||||
int rw = img_fp.cols;
|
||||
int rc = img_fp.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
|
||||
i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat tinypose_128x96::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string tinypose_128x96::base64Decode(const char *Data, int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(tinypose_128x96);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,69 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class tinypose_128x96
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(tinypose_128x96);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 128;
|
||||
int im_shape_w = 96;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,282 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "core/general-server/op/yolov3_darknet53_270e_coco.h"
|
||||
#include "core/predictor/framework/infer.h"
|
||||
#include "core/predictor/framework/memory.h"
|
||||
#include "core/predictor/framework/resource.h"
|
||||
#include "core/util/include/timer.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
using baidu::paddle_serving::Timer;
|
||||
using baidu::paddle_serving::predictor::InferManager;
|
||||
using baidu::paddle_serving::predictor::MempoolWrapper;
|
||||
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
|
||||
using baidu::paddle_serving::predictor::general_model::Request;
|
||||
using baidu::paddle_serving::predictor::general_model::Response;
|
||||
using baidu::paddle_serving::predictor::general_model::Tensor;
|
||||
|
||||
int yolov3_darknet53_270e_coco::inference() {
|
||||
VLOG(2) << "Going to run inference";
|
||||
const std::vector<std::string> pre_node_names = pre_names();
|
||||
if (pre_node_names.size() != 1) {
|
||||
LOG(ERROR) << "This op(" << op_name()
|
||||
<< ") can only have one predecessor op, but received "
|
||||
<< pre_node_names.size();
|
||||
return -1;
|
||||
}
|
||||
const std::string pre_name = pre_node_names[0];
|
||||
|
||||
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "input_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
uint64_t log_id = input_blob->GetLogId();
|
||||
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
|
||||
|
||||
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
|
||||
if (!output_blob) {
|
||||
LOG(ERROR) << "output_blob is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
output_blob->SetLogId(log_id);
|
||||
|
||||
if (!input_blob) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed mutable depended argument, op:" << pre_name;
|
||||
return -1;
|
||||
}
|
||||
|
||||
const TensorVector *in = &input_blob->tensor_vector;
|
||||
TensorVector *out = &output_blob->tensor_vector;
|
||||
|
||||
int batch_size = input_blob->_batch_size;
|
||||
output_blob->_batch_size = batch_size;
|
||||
VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
|
||||
|
||||
Timer timeline;
|
||||
int64_t start = timeline.TimeStampUS();
|
||||
timeline.Start();
|
||||
|
||||
// only support string type
|
||||
char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
|
||||
std::string base64str = total_input_ptr;
|
||||
|
||||
cv::Mat img = Base2Mat(base64str);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// preprocess
|
||||
std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
|
||||
preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
|
||||
im_shape_w, mean_, scale_, is_scale_);
|
||||
|
||||
// create real_in
|
||||
TensorVector *real_in = new TensorVector();
|
||||
if (!real_in) {
|
||||
LOG(ERROR) << "real_in is nullptr,error";
|
||||
return -1;
|
||||
}
|
||||
|
||||
int in_num = 0;
|
||||
size_t databuf_size = 0;
|
||||
void *databuf_data = NULL;
|
||||
char *databuf_char = NULL;
|
||||
|
||||
// im_shape
|
||||
std::vector<float> im_shape{static_cast<float>(im_shape_h),
|
||||
static_cast<float>(im_shape_w)};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, im_shape.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_0;
|
||||
tensor_in_0.name = "im_shape";
|
||||
tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_0.shape = {1, 2};
|
||||
tensor_in_0.lod = in->at(0).lod;
|
||||
tensor_in_0.data = paddleBuf_0;
|
||||
real_in->push_back(tensor_in_0);
|
||||
|
||||
// image
|
||||
in_num = 1 * 3 * im_shape_h * im_shape_w;
|
||||
databuf_size = in_num * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, input.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_1;
|
||||
tensor_in_1.name = "image";
|
||||
tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_1.shape = {1, 3, im_shape_h, im_shape_w};
|
||||
tensor_in_1.lod = in->at(0).lod;
|
||||
tensor_in_1.data = paddleBuf_1;
|
||||
real_in->push_back(tensor_in_1);
|
||||
|
||||
// scale_factor
|
||||
std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
|
||||
databuf_size = 2 * sizeof(float);
|
||||
|
||||
databuf_data = MempoolWrapper::instance().malloc(databuf_size);
|
||||
if (!databuf_data) {
|
||||
LOG(ERROR) << "Malloc failed, size: " << databuf_size;
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy(databuf_data, scale_factor.data(), databuf_size);
|
||||
databuf_char = reinterpret_cast<char *>(databuf_data);
|
||||
paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
|
||||
paddle::PaddleTensor tensor_in_2;
|
||||
tensor_in_2.name = "scale_factor";
|
||||
tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
|
||||
tensor_in_2.shape = {1, 2};
|
||||
tensor_in_2.lod = in->at(0).lod;
|
||||
tensor_in_2.data = paddleBuf_2;
|
||||
real_in->push_back(tensor_in_2);
|
||||
|
||||
if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
|
||||
batch_size)) {
|
||||
LOG(ERROR) << "(logid=" << log_id
|
||||
<< ") Failed do infer in fluid model: " << engine_name().c_str();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int64_t end = timeline.TimeStampUS();
|
||||
CopyBlobInfo(input_blob, output_blob);
|
||||
AddBlobInfo(output_blob, start);
|
||||
AddBlobInfo(output_blob, end);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void yolov3_darknet53_270e_coco::preprocess_det(const cv::Mat &img, float *data,
|
||||
float &scale_factor_h,
|
||||
float &scale_factor_w,
|
||||
int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale,
|
||||
const bool is_scale) {
|
||||
// scale_factor
|
||||
scale_factor_h =
|
||||
static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
|
||||
scale_factor_w =
|
||||
static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
|
||||
|
||||
// Resize
|
||||
cv::Mat resize_img;
|
||||
cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
|
||||
|
||||
// Normalize
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
cv::Mat img_fp;
|
||||
(resize_img).convertTo(img_fp, CV_32FC3, e);
|
||||
for (int h = 0; h < im_shape_h; h++) {
|
||||
for (int w = 0; w < im_shape_w; w++) {
|
||||
img_fp.at<cv::Vec3f>(h, w)[0] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
|
||||
img_fp.at<cv::Vec3f>(h, w)[1] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
|
||||
img_fp.at<cv::Vec3f>(h, w)[2] =
|
||||
(img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
|
||||
}
|
||||
}
|
||||
|
||||
// Permute
|
||||
int rh = img_fp.rows;
|
||||
int rw = img_fp.cols;
|
||||
int rc = img_fp.channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
|
||||
i);
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat yolov3_darknet53_270e_coco::Base2Mat(std::string &base64_data) {
|
||||
cv::Mat img;
|
||||
std::string s_mat;
|
||||
s_mat = base64Decode(base64_data.data(), base64_data.size());
|
||||
std::vector<char> base64_img(s_mat.begin(), s_mat.end());
|
||||
img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
|
||||
return img;
|
||||
}
|
||||
|
||||
std::string yolov3_darknet53_270e_coco::base64Decode(const char *Data,
|
||||
int DataByte) {
|
||||
const char DecodeTable[] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
62, // '+'
|
||||
0, 0, 0,
|
||||
63, // '/'
|
||||
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
|
||||
0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
||||
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
|
||||
};
|
||||
|
||||
std::string strDecode;
|
||||
int nValue;
|
||||
int i = 0;
|
||||
while (i < DataByte) {
|
||||
if (*Data != '\r' && *Data != '\n') {
|
||||
nValue = DecodeTable[*Data++] << 18;
|
||||
nValue += DecodeTable[*Data++] << 12;
|
||||
strDecode += (nValue & 0x00FF0000) >> 16;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++] << 6;
|
||||
strDecode += (nValue & 0x0000FF00) >> 8;
|
||||
if (*Data != '=') {
|
||||
nValue += DecodeTable[*Data++];
|
||||
strDecode += nValue & 0x000000FF;
|
||||
}
|
||||
}
|
||||
i += 4;
|
||||
} else // 回车换行,跳过
|
||||
{
|
||||
Data++;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return strDecode;
|
||||
}
|
||||
|
||||
DEFINE_OP(yolov3_darknet53_270e_coco);
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
@@ -0,0 +1,69 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "core/general-server/general_model_service.pb.h"
|
||||
#include "core/general-server/op/general_infer_helper.h"
|
||||
#include "paddle_inference_api.h" // NOLINT
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
namespace baidu {
|
||||
namespace paddle_serving {
|
||||
namespace serving {
|
||||
|
||||
class yolov3_darknet53_270e_coco
|
||||
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
|
||||
public:
|
||||
typedef std::vector<paddle::PaddleTensor> TensorVector;
|
||||
|
||||
DECLARE_OP(yolov3_darknet53_270e_coco);
|
||||
|
||||
int inference();
|
||||
|
||||
private:
|
||||
// preprocess
|
||||
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> scale_ = {0.229f, 0.224f, 0.225f};
|
||||
bool is_scale_ = true;
|
||||
int im_shape_h = 608;
|
||||
int im_shape_w = 608;
|
||||
float scale_factor_h = 1.0f;
|
||||
float scale_factor_w = 1.0f;
|
||||
void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h,
|
||||
float &scale_factor_w, int im_shape_h, int im_shape_w,
|
||||
const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale);
|
||||
|
||||
// read pics
|
||||
cv::Mat Base2Mat(std::string &base64_data);
|
||||
std::string base64Decode(const char *Data, int DataByte);
|
||||
};
|
||||
|
||||
} // namespace serving
|
||||
} // namespace paddle_serving
|
||||
} // namespace baidu
|
||||
Reference in New Issue
Block a user