更换文档检测模型
This commit is contained in:
150
paddle_detection/deploy/third_engine/onnx/infer.py
Normal file
150
paddle_detection/deploy/third_engine/onnx/infer.py
Normal file
@@ -0,0 +1,150 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import yaml
|
||||
from onnxruntime import InferenceSession
|
||||
|
||||
from .preprocess import Compose
|
||||
|
||||
# Global dictionary
|
||||
SUPPORT_MODELS = {
|
||||
'YOLO', 'PPYOLOE', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet',
|
||||
'S2ANet', 'JDE', 'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet',
|
||||
'TOOD', 'RetinaNet', 'StrongBaseline', 'STGCN', 'YOLOX', 'HRNet'
|
||||
}
|
||||
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument("--infer_cfg", type=str, help="infer_cfg.yml")
|
||||
parser.add_argument(
|
||||
'--onnx_file', type=str, default="model.onnx", help="onnx model file path")
|
||||
parser.add_argument("--image_dir", type=str)
|
||||
parser.add_argument("--image_file", type=str)
|
||||
|
||||
|
||||
def get_test_images(infer_dir, infer_img):
|
||||
"""
|
||||
Get image path list in TEST mode
|
||||
"""
|
||||
assert infer_img is not None or infer_dir is not None, \
|
||||
"--image_file or --image_dir should be set"
|
||||
assert infer_img is None or os.path.isfile(infer_img), \
|
||||
"{} is not a file".format(infer_img)
|
||||
assert infer_dir is None or os.path.isdir(infer_dir), \
|
||||
"{} is not a directory".format(infer_dir)
|
||||
|
||||
# infer_img has a higher priority
|
||||
if infer_img and os.path.isfile(infer_img):
|
||||
return [infer_img]
|
||||
|
||||
images = set()
|
||||
infer_dir = os.path.abspath(infer_dir)
|
||||
assert os.path.isdir(infer_dir), \
|
||||
"infer_dir {} is not a directory".format(infer_dir)
|
||||
exts = ['jpg', 'jpeg', 'png', 'bmp']
|
||||
exts += [ext.upper() for ext in exts]
|
||||
for ext in exts:
|
||||
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
|
||||
images = list(images)
|
||||
|
||||
assert len(images) > 0, "no image found in {}".format(infer_dir)
|
||||
print("Found {} inference images in total.".format(len(images)))
|
||||
|
||||
return images
|
||||
|
||||
|
||||
class PredictConfig(object):
|
||||
"""set config of preprocess, postprocess and visualize
|
||||
Args:
|
||||
infer_config (str): path of infer_cfg.yml
|
||||
"""
|
||||
|
||||
def __init__(self, infer_config):
|
||||
# parsing Yaml config for Preprocess
|
||||
with open(infer_config) as f:
|
||||
yml_conf = yaml.safe_load(f)
|
||||
self.check_model(yml_conf)
|
||||
self.arch = yml_conf['arch']
|
||||
self.preprocess_infos = yml_conf['Preprocess']
|
||||
self.min_subgraph_size = yml_conf['min_subgraph_size']
|
||||
self.label_list = yml_conf['label_list']
|
||||
self.use_dynamic_shape = yml_conf['use_dynamic_shape']
|
||||
self.draw_threshold = yml_conf.get("draw_threshold", 0.5)
|
||||
self.mask = yml_conf.get("mask", False)
|
||||
self.tracker = yml_conf.get("tracker", None)
|
||||
self.nms = yml_conf.get("NMS", None)
|
||||
self.fpn_stride = yml_conf.get("fpn_stride", None)
|
||||
if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
|
||||
print(
|
||||
'The RCNN export model is used for ONNX and it only supports batch_size = 1'
|
||||
)
|
||||
self.print_config()
|
||||
|
||||
def check_model(self, yml_conf):
|
||||
"""
|
||||
Raises:
|
||||
ValueError: loaded model not in supported model type
|
||||
"""
|
||||
for support_model in SUPPORT_MODELS:
|
||||
if support_model in yml_conf['arch']:
|
||||
return True
|
||||
raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
|
||||
'arch'], SUPPORT_MODELS))
|
||||
|
||||
def print_config(self):
|
||||
print('----------- Model Configuration -----------')
|
||||
print('%s: %s' % ('Model Arch', self.arch))
|
||||
print('%s: ' % ('Transform Order'))
|
||||
for op_info in self.preprocess_infos:
|
||||
print('--%s: %s' % ('transform op', op_info['type']))
|
||||
print('--------------------------------------------')
|
||||
|
||||
|
||||
def predict_image(infer_config, predictor, img_list):
|
||||
# load preprocess transforms
|
||||
transforms = Compose(infer_config.preprocess_infos)
|
||||
# predict image
|
||||
for img_path in img_list:
|
||||
inputs = transforms(img_path)
|
||||
inputs["image"] = np.array(inputs["image"]).astype('float32')
|
||||
inputs_name = [var.name for var in predictor.get_inputs()]
|
||||
inputs = {k: inputs[k][None,] for k in inputs_name}
|
||||
|
||||
outputs = predictor.run(output_names=None, input_feed=inputs)
|
||||
|
||||
print("ONNXRuntime predict: ")
|
||||
if infer_config.arch in ["HRNet"]:
|
||||
print(np.array(outputs[0]))
|
||||
else:
|
||||
bboxes = np.array(outputs[0])
|
||||
for bbox in bboxes:
|
||||
if bbox[0] > -1 and bbox[1] > infer_config.draw_threshold:
|
||||
print(f"{int(bbox[0])} {bbox[1]} "
|
||||
f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
FLAGS = parser.parse_args()
|
||||
# load image list
|
||||
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
|
||||
# load predictor
|
||||
predictor = InferenceSession(FLAGS.onnx_file)
|
||||
# load infer config
|
||||
infer_config = PredictConfig(FLAGS.infer_cfg)
|
||||
|
||||
predict_image(infer_config, predictor, img_list)
|
||||
494
paddle_detection/deploy/third_engine/onnx/preprocess.py
Normal file
494
paddle_detection/deploy/third_engine/onnx/preprocess.py
Normal file
@@ -0,0 +1,494 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
import copy
|
||||
|
||||
|
||||
def decode_image(img_path):
|
||||
with open(img_path, 'rb') as f:
|
||||
im_read = f.read()
|
||||
data = np.frombuffer(im_read, dtype='uint8')
|
||||
im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
|
||||
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
||||
img_info = {
|
||||
"im_shape": np.array(
|
||||
im.shape[:2], dtype=np.float32),
|
||||
"scale_factor": np.array(
|
||||
[1., 1.], dtype=np.float32)
|
||||
}
|
||||
return im, img_info
|
||||
|
||||
|
||||
class Resize(object):
|
||||
"""resize image by target_size and max_size
|
||||
Args:
|
||||
target_size (int): the target size of image
|
||||
keep_ratio (bool): whether keep_ratio or not, default true
|
||||
interp (int): method of resize
|
||||
"""
|
||||
|
||||
def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
|
||||
if isinstance(target_size, int):
|
||||
target_size = [target_size, target_size]
|
||||
self.target_size = target_size
|
||||
self.keep_ratio = keep_ratio
|
||||
self.interp = interp
|
||||
|
||||
def __call__(self, im, im_info):
|
||||
"""
|
||||
Args:
|
||||
im (np.ndarray): image (np.ndarray)
|
||||
im_info (dict): info of image
|
||||
Returns:
|
||||
im (np.ndarray): processed image (np.ndarray)
|
||||
im_info (dict): info of processed image
|
||||
"""
|
||||
assert len(self.target_size) == 2
|
||||
assert self.target_size[0] > 0 and self.target_size[1] > 0
|
||||
im_channel = im.shape[2]
|
||||
im_scale_y, im_scale_x = self.generate_scale(im)
|
||||
im = cv2.resize(
|
||||
im,
|
||||
None,
|
||||
None,
|
||||
fx=im_scale_x,
|
||||
fy=im_scale_y,
|
||||
interpolation=self.interp)
|
||||
im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
|
||||
im_info['scale_factor'] = np.array(
|
||||
[im_scale_y, im_scale_x]).astype('float32')
|
||||
return im, im_info
|
||||
|
||||
def generate_scale(self, im):
|
||||
"""
|
||||
Args:
|
||||
im (np.ndarray): image (np.ndarray)
|
||||
Returns:
|
||||
im_scale_x: the resize ratio of X
|
||||
im_scale_y: the resize ratio of Y
|
||||
"""
|
||||
origin_shape = im.shape[:2]
|
||||
im_c = im.shape[2]
|
||||
if self.keep_ratio:
|
||||
im_size_min = np.min(origin_shape)
|
||||
im_size_max = np.max(origin_shape)
|
||||
target_size_min = np.min(self.target_size)
|
||||
target_size_max = np.max(self.target_size)
|
||||
im_scale = float(target_size_min) / float(im_size_min)
|
||||
if np.round(im_scale * im_size_max) > target_size_max:
|
||||
im_scale = float(target_size_max) / float(im_size_max)
|
||||
im_scale_x = im_scale
|
||||
im_scale_y = im_scale
|
||||
else:
|
||||
resize_h, resize_w = self.target_size
|
||||
im_scale_y = resize_h / float(origin_shape[0])
|
||||
im_scale_x = resize_w / float(origin_shape[1])
|
||||
return im_scale_y, im_scale_x
|
||||
|
||||
|
||||
class NormalizeImage(object):
|
||||
"""normalize image
|
||||
Args:
|
||||
mean (list): im - mean
|
||||
std (list): im / std
|
||||
is_scale (bool): whether need im / 255
|
||||
norm_type (str): type in ['mean_std', 'none']
|
||||
"""
|
||||
|
||||
def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
|
||||
self.mean = mean
|
||||
self.std = std
|
||||
self.is_scale = is_scale
|
||||
self.norm_type = norm_type
|
||||
|
||||
def __call__(self, im, im_info):
|
||||
"""
|
||||
Args:
|
||||
im (np.ndarray): image (np.ndarray)
|
||||
im_info (dict): info of image
|
||||
Returns:
|
||||
im (np.ndarray): processed image (np.ndarray)
|
||||
im_info (dict): info of processed image
|
||||
"""
|
||||
im = im.astype(np.float32, copy=False)
|
||||
if self.is_scale:
|
||||
scale = 1.0 / 255.0
|
||||
im *= scale
|
||||
|
||||
if self.norm_type == 'mean_std':
|
||||
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
|
||||
std = np.array(self.std)[np.newaxis, np.newaxis, :]
|
||||
im -= mean
|
||||
im /= std
|
||||
return im, im_info
|
||||
|
||||
|
||||
class Permute(object):
|
||||
"""permute image
|
||||
Args:
|
||||
to_bgr (bool): whether convert RGB to BGR
|
||||
channel_first (bool): whether convert HWC to CHW
|
||||
"""
|
||||
|
||||
def __init__(self, ):
|
||||
super(Permute, self).__init__()
|
||||
|
||||
def __call__(self, im, im_info):
|
||||
"""
|
||||
Args:
|
||||
im (np.ndarray): image (np.ndarray)
|
||||
im_info (dict): info of image
|
||||
Returns:
|
||||
im (np.ndarray): processed image (np.ndarray)
|
||||
im_info (dict): info of processed image
|
||||
"""
|
||||
im = im.transpose((2, 0, 1)).copy()
|
||||
return im, im_info
|
||||
|
||||
|
||||
class PadStride(object):
|
||||
""" padding image for model with FPN, instead PadBatch(pad_to_stride) in original config
|
||||
Args:
|
||||
stride (bool): model with FPN need image shape % stride == 0
|
||||
"""
|
||||
|
||||
def __init__(self, stride=0):
|
||||
self.coarsest_stride = stride
|
||||
|
||||
def __call__(self, im, im_info):
|
||||
"""
|
||||
Args:
|
||||
im (np.ndarray): image (np.ndarray)
|
||||
im_info (dict): info of image
|
||||
Returns:
|
||||
im (np.ndarray): processed image (np.ndarray)
|
||||
im_info (dict): info of processed image
|
||||
"""
|
||||
coarsest_stride = self.coarsest_stride
|
||||
if coarsest_stride <= 0:
|
||||
return im, im_info
|
||||
im_c, im_h, im_w = im.shape
|
||||
pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
|
||||
pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
|
||||
padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
|
||||
padding_im[:, :im_h, :im_w] = im
|
||||
return padding_im, im_info
|
||||
|
||||
|
||||
class LetterBoxResize(object):
|
||||
def __init__(self, target_size):
|
||||
"""
|
||||
Resize image to target size, convert normalized xywh to pixel xyxy
|
||||
format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]).
|
||||
Args:
|
||||
target_size (int|list): image target size.
|
||||
"""
|
||||
super(LetterBoxResize, self).__init__()
|
||||
if isinstance(target_size, int):
|
||||
target_size = [target_size, target_size]
|
||||
self.target_size = target_size
|
||||
|
||||
def letterbox(self, img, height, width, color=(127.5, 127.5, 127.5)):
|
||||
# letterbox: resize a rectangular image to a padded rectangular
|
||||
shape = img.shape[:2] # [height, width]
|
||||
ratio_h = float(height) / shape[0]
|
||||
ratio_w = float(width) / shape[1]
|
||||
ratio = min(ratio_h, ratio_w)
|
||||
new_shape = (round(shape[1] * ratio),
|
||||
round(shape[0] * ratio)) # [width, height]
|
||||
padw = (width - new_shape[0]) / 2
|
||||
padh = (height - new_shape[1]) / 2
|
||||
top, bottom = round(padh - 0.1), round(padh + 0.1)
|
||||
left, right = round(padw - 0.1), round(padw + 0.1)
|
||||
|
||||
img = cv2.resize(
|
||||
img, new_shape, interpolation=cv2.INTER_AREA) # resized, no border
|
||||
img = cv2.copyMakeBorder(
|
||||
img, top, bottom, left, right, cv2.BORDER_CONSTANT,
|
||||
value=color) # padded rectangular
|
||||
return img, ratio, padw, padh
|
||||
|
||||
def __call__(self, im, im_info):
|
||||
"""
|
||||
Args:
|
||||
im (np.ndarray): image (np.ndarray)
|
||||
im_info (dict): info of image
|
||||
Returns:
|
||||
im (np.ndarray): processed image (np.ndarray)
|
||||
im_info (dict): info of processed image
|
||||
"""
|
||||
assert len(self.target_size) == 2
|
||||
assert self.target_size[0] > 0 and self.target_size[1] > 0
|
||||
height, width = self.target_size
|
||||
h, w = im.shape[:2]
|
||||
im, ratio, padw, padh = self.letterbox(im, height=height, width=width)
|
||||
|
||||
new_shape = [round(h * ratio), round(w * ratio)]
|
||||
im_info['im_shape'] = np.array(new_shape, dtype=np.float32)
|
||||
im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32)
|
||||
return im, im_info
|
||||
|
||||
|
||||
class Pad(object):
|
||||
def __init__(self, size, fill_value=[114.0, 114.0, 114.0]):
|
||||
"""
|
||||
Pad image to a specified size.
|
||||
Args:
|
||||
size (list[int]): image target size
|
||||
fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
|
||||
"""
|
||||
super(Pad, self).__init__()
|
||||
if isinstance(size, int):
|
||||
size = [size, size]
|
||||
self.size = size
|
||||
self.fill_value = fill_value
|
||||
|
||||
def __call__(self, im, im_info):
|
||||
im_h, im_w = im.shape[:2]
|
||||
h, w = self.size
|
||||
if h == im_h and w == im_w:
|
||||
im = im.astype(np.float32)
|
||||
return im, im_info
|
||||
|
||||
canvas = np.ones((h, w, 3), dtype=np.float32)
|
||||
canvas *= np.array(self.fill_value, dtype=np.float32)
|
||||
canvas[0:im_h, 0:im_w, :] = im.astype(np.float32)
|
||||
im = canvas
|
||||
return im, im_info
|
||||
|
||||
|
||||
def rotate_point(pt, angle_rad):
|
||||
"""Rotate a point by an angle.
|
||||
|
||||
Args:
|
||||
pt (list[float]): 2 dimensional point to be rotated
|
||||
angle_rad (float): rotation angle by radian
|
||||
|
||||
Returns:
|
||||
list[float]: Rotated point.
|
||||
"""
|
||||
assert len(pt) == 2
|
||||
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
|
||||
new_x = pt[0] * cs - pt[1] * sn
|
||||
new_y = pt[0] * sn + pt[1] * cs
|
||||
rotated_pt = [new_x, new_y]
|
||||
|
||||
return rotated_pt
|
||||
|
||||
|
||||
def _get_3rd_point(a, b):
|
||||
"""To calculate the affine matrix, three pairs of points are required. This
|
||||
function is used to get the 3rd point, given 2D points a & b.
|
||||
|
||||
The 3rd point is defined by rotating vector `a - b` by 90 degrees
|
||||
anticlockwise, using b as the rotation center.
|
||||
|
||||
Args:
|
||||
a (np.ndarray): point(x,y)
|
||||
b (np.ndarray): point(x,y)
|
||||
|
||||
Returns:
|
||||
np.ndarray: The 3rd point.
|
||||
"""
|
||||
assert len(a) == 2
|
||||
assert len(b) == 2
|
||||
direction = a - b
|
||||
third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)
|
||||
|
||||
return third_pt
|
||||
|
||||
|
||||
def get_affine_transform(center,
|
||||
input_size,
|
||||
rot,
|
||||
output_size,
|
||||
shift=(0., 0.),
|
||||
inv=False):
|
||||
"""Get the affine transform matrix, given the center/scale/rot/output_size.
|
||||
|
||||
Args:
|
||||
center (np.ndarray[2, ]): Center of the bounding box (x, y).
|
||||
scale (np.ndarray[2, ]): Scale of the bounding box
|
||||
wrt [width, height].
|
||||
rot (float): Rotation angle (degree).
|
||||
output_size (np.ndarray[2, ]): Size of the destination heatmaps.
|
||||
shift (0-100%): Shift translation ratio wrt the width/height.
|
||||
Default (0., 0.).
|
||||
inv (bool): Option to inverse the affine transform direction.
|
||||
(inv=False: src->dst or inv=True: dst->src)
|
||||
|
||||
Returns:
|
||||
np.ndarray: The transform matrix.
|
||||
"""
|
||||
assert len(center) == 2
|
||||
assert len(output_size) == 2
|
||||
assert len(shift) == 2
|
||||
if not isinstance(input_size, (np.ndarray, list)):
|
||||
input_size = np.array([input_size, input_size], dtype=np.float32)
|
||||
scale_tmp = input_size
|
||||
|
||||
shift = np.array(shift)
|
||||
src_w = scale_tmp[0]
|
||||
dst_w = output_size[0]
|
||||
dst_h = output_size[1]
|
||||
|
||||
rot_rad = np.pi * rot / 180
|
||||
src_dir = rotate_point([0., src_w * -0.5], rot_rad)
|
||||
dst_dir = np.array([0., dst_w * -0.5])
|
||||
|
||||
src = np.zeros((3, 2), dtype=np.float32)
|
||||
src[0, :] = center + scale_tmp * shift
|
||||
src[1, :] = center + src_dir + scale_tmp * shift
|
||||
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
|
||||
|
||||
dst = np.zeros((3, 2), dtype=np.float32)
|
||||
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
||||
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
|
||||
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
|
||||
|
||||
if inv:
|
||||
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
||||
else:
|
||||
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
||||
|
||||
return trans
|
||||
|
||||
|
||||
class WarpAffine(object):
|
||||
"""Warp affine the image
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
keep_res=False,
|
||||
pad=31,
|
||||
input_h=512,
|
||||
input_w=512,
|
||||
scale=0.4,
|
||||
shift=0.1):
|
||||
self.keep_res = keep_res
|
||||
self.pad = pad
|
||||
self.input_h = input_h
|
||||
self.input_w = input_w
|
||||
self.scale = scale
|
||||
self.shift = shift
|
||||
|
||||
def __call__(self, im, im_info):
|
||||
"""
|
||||
Args:
|
||||
im (np.ndarray): image (np.ndarray)
|
||||
im_info (dict): info of image
|
||||
Returns:
|
||||
im (np.ndarray): processed image (np.ndarray)
|
||||
im_info (dict): info of processed image
|
||||
"""
|
||||
img = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
|
||||
|
||||
h, w = img.shape[:2]
|
||||
|
||||
if self.keep_res:
|
||||
input_h = (h | self.pad) + 1
|
||||
input_w = (w | self.pad) + 1
|
||||
s = np.array([input_w, input_h], dtype=np.float32)
|
||||
c = np.array([w // 2, h // 2], dtype=np.float32)
|
||||
|
||||
else:
|
||||
s = max(h, w) * 1.0
|
||||
input_h, input_w = self.input_h, self.input_w
|
||||
c = np.array([w / 2., h / 2.], dtype=np.float32)
|
||||
|
||||
trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
|
||||
img = cv2.resize(img, (w, h))
|
||||
inp = cv2.warpAffine(
|
||||
img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
|
||||
return inp, im_info
|
||||
|
||||
|
||||
# keypoint preprocess
|
||||
def get_warp_matrix(theta, size_input, size_dst, size_target):
|
||||
"""This code is based on
|
||||
https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py
|
||||
|
||||
Calculate the transformation matrix under the constraint of unbiased.
|
||||
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
|
||||
Data Processing for Human Pose Estimation (CVPR 2020).
|
||||
|
||||
Args:
|
||||
theta (float): Rotation angle in degrees.
|
||||
size_input (np.ndarray): Size of input image [w, h].
|
||||
size_dst (np.ndarray): Size of output image [w, h].
|
||||
size_target (np.ndarray): Size of ROI in input plane [w, h].
|
||||
|
||||
Returns:
|
||||
matrix (np.ndarray): A matrix for transformation.
|
||||
"""
|
||||
theta = np.deg2rad(theta)
|
||||
matrix = np.zeros((2, 3), dtype=np.float32)
|
||||
scale_x = size_dst[0] / size_target[0]
|
||||
scale_y = size_dst[1] / size_target[1]
|
||||
matrix[0, 0] = np.cos(theta) * scale_x
|
||||
matrix[0, 1] = -np.sin(theta) * scale_x
|
||||
matrix[0, 2] = scale_x * (
|
||||
-0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
|
||||
np.sin(theta) + 0.5 * size_target[0])
|
||||
matrix[1, 0] = np.sin(theta) * scale_y
|
||||
matrix[1, 1] = np.cos(theta) * scale_y
|
||||
matrix[1, 2] = scale_y * (
|
||||
-0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
|
||||
np.cos(theta) + 0.5 * size_target[1])
|
||||
return matrix
|
||||
|
||||
|
||||
class TopDownEvalAffine(object):
|
||||
"""apply affine transform to image and coords
|
||||
|
||||
Args:
|
||||
trainsize (list): [w, h], the standard size used to train
|
||||
use_udp (bool): whether to use Unbiased Data Processing.
|
||||
records(dict): the dict contained the image and coords
|
||||
|
||||
Returns:
|
||||
records (dict): contain the image and coords after tranformed
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, trainsize, use_udp=False):
|
||||
self.trainsize = trainsize
|
||||
self.use_udp = use_udp
|
||||
|
||||
def __call__(self, image, im_info):
|
||||
rot = 0
|
||||
imshape = im_info['im_shape'][::-1]
|
||||
center = im_info['center'] if 'center' in im_info else imshape / 2.
|
||||
scale = im_info['scale'] if 'scale' in im_info else imshape
|
||||
if self.use_udp:
|
||||
trans = get_warp_matrix(
|
||||
rot, center * 2.0,
|
||||
[self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale)
|
||||
image = cv2.warpAffine(
|
||||
image,
|
||||
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
|
||||
flags=cv2.INTER_LINEAR)
|
||||
else:
|
||||
trans = get_affine_transform(center, scale, rot, self.trainsize)
|
||||
image = cv2.warpAffine(
|
||||
image,
|
||||
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
|
||||
flags=cv2.INTER_LINEAR)
|
||||
|
||||
return image, im_info
|
||||
|
||||
|
||||
class Compose:
|
||||
def __init__(self, transforms):
|
||||
self.transforms = []
|
||||
for op_info in transforms:
|
||||
new_op_info = op_info.copy()
|
||||
op_type = new_op_info.pop('type')
|
||||
self.transforms.append(eval(op_type)(**new_op_info))
|
||||
|
||||
def __call__(self, img_path):
|
||||
img, im_info = decode_image(img_path)
|
||||
for t in self.transforms:
|
||||
img, im_info = t(img, im_info)
|
||||
inputs = copy.deepcopy(im_info)
|
||||
inputs['image'] = img
|
||||
return inputs
|
||||
Reference in New Issue
Block a user