更换文档检测模型
This commit is contained in:
615
paddle_detection/ppdet/data/reader.py
Normal file
615
paddle_detection/ppdet/data/reader.py
Normal file
@@ -0,0 +1,615 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import copy
|
||||
import os
|
||||
import traceback
|
||||
import six
|
||||
import sys
|
||||
if sys.version_info >= (3, 0):
|
||||
pass
|
||||
else:
|
||||
pass
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.nn.functional as F
|
||||
|
||||
from copy import deepcopy
|
||||
|
||||
from paddle.io import DataLoader, DistributedBatchSampler
|
||||
from .utils import default_collate_fn
|
||||
|
||||
from ppdet.core.workspace import register
|
||||
from . import transform
|
||||
from .shm_utils import _get_shared_memory_size_in_M
|
||||
|
||||
from ppdet.utils.logger import setup_logger
|
||||
logger = setup_logger('reader')
|
||||
|
||||
MAIN_PID = os.getpid()
|
||||
|
||||
|
||||
class Compose(object):
|
||||
def __init__(self, transforms, num_classes=80):
|
||||
self.transforms = transforms
|
||||
self.transforms_cls = []
|
||||
for t in self.transforms:
|
||||
for k, v in t.items():
|
||||
op_cls = getattr(transform, k)
|
||||
f = op_cls(**v)
|
||||
if hasattr(f, 'num_classes'):
|
||||
f.num_classes = num_classes
|
||||
|
||||
self.transforms_cls.append(f)
|
||||
|
||||
def __call__(self, data):
|
||||
for f in self.transforms_cls:
|
||||
try:
|
||||
data = f(data)
|
||||
except Exception as e:
|
||||
stack_info = traceback.format_exc()
|
||||
logger.warning("fail to map sample transform [{}] "
|
||||
"with error: {} and stack:\n{}".format(
|
||||
f, e, str(stack_info)))
|
||||
raise e
|
||||
|
||||
return data
|
||||
|
||||
|
||||
class BatchCompose(Compose):
|
||||
def __init__(self, transforms, num_classes=80, collate_batch=True):
|
||||
super(BatchCompose, self).__init__(transforms, num_classes)
|
||||
self.collate_batch = collate_batch
|
||||
|
||||
def __call__(self, data):
|
||||
for f in self.transforms_cls:
|
||||
try:
|
||||
data = f(data)
|
||||
except Exception as e:
|
||||
stack_info = traceback.format_exc()
|
||||
logger.warning("fail to map batch transform [{}] "
|
||||
"with error: {} and stack:\n{}".format(
|
||||
f, e, str(stack_info)))
|
||||
raise e
|
||||
|
||||
# remove keys which is not needed by model
|
||||
extra_key = ['h', 'w', 'flipped']
|
||||
for k in extra_key:
|
||||
for sample in data:
|
||||
if k in sample:
|
||||
sample.pop(k)
|
||||
|
||||
# batch data, if user-define batch function needed
|
||||
# use user-defined here
|
||||
if self.collate_batch:
|
||||
batch_data = default_collate_fn(data)
|
||||
else:
|
||||
batch_data = {}
|
||||
for k in data[0].keys():
|
||||
tmp_data = []
|
||||
for i in range(len(data)):
|
||||
tmp_data.append(data[i][k])
|
||||
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
|
||||
tmp_data = np.stack(tmp_data, axis=0)
|
||||
batch_data[k] = tmp_data
|
||||
return batch_data
|
||||
|
||||
|
||||
class BaseDataLoader(object):
|
||||
"""
|
||||
Base DataLoader implementation for detection models
|
||||
|
||||
Args:
|
||||
sample_transforms (list): a list of transforms to perform
|
||||
on each sample
|
||||
batch_transforms (list): a list of transforms to perform
|
||||
on batch
|
||||
batch_size (int): batch size for batch collating, default 1.
|
||||
shuffle (bool): whether to shuffle samples
|
||||
drop_last (bool): whether to drop the last incomplete,
|
||||
default False
|
||||
num_classes (int): class number of dataset, default 80
|
||||
collate_batch (bool): whether to collate batch in dataloader.
|
||||
If set to True, the samples will collate into batch according
|
||||
to the batch size. Otherwise, the ground-truth will not collate,
|
||||
which is used when the number of ground-truch is different in
|
||||
samples.
|
||||
use_shared_memory (bool): whether to use shared memory to
|
||||
accelerate data loading, enable this only if you
|
||||
are sure that the shared memory size of your OS
|
||||
is larger than memory cost of input datas of model.
|
||||
Note that shared memory will be automatically
|
||||
disabled if the shared memory of OS is less than
|
||||
1G, which is not enough for detection models.
|
||||
Default False.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
sample_transforms=[],
|
||||
batch_transforms=[],
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
drop_last=False,
|
||||
num_classes=80,
|
||||
collate_batch=True,
|
||||
use_shared_memory=False,
|
||||
**kwargs):
|
||||
# sample transform
|
||||
self._sample_transforms = Compose(
|
||||
sample_transforms, num_classes=num_classes)
|
||||
|
||||
# batch transfrom
|
||||
self._batch_transforms = BatchCompose(batch_transforms, num_classes,
|
||||
collate_batch)
|
||||
self.batch_size = batch_size
|
||||
self.shuffle = shuffle
|
||||
self.drop_last = drop_last
|
||||
self.use_shared_memory = use_shared_memory
|
||||
self.kwargs = kwargs
|
||||
|
||||
def __call__(self,
|
||||
dataset,
|
||||
worker_num,
|
||||
batch_sampler=None,
|
||||
return_list=False):
|
||||
self.dataset = dataset
|
||||
self.dataset.check_or_download_dataset()
|
||||
self.dataset.parse_dataset()
|
||||
# get data
|
||||
self.dataset.set_transform(self._sample_transforms)
|
||||
# set kwargs
|
||||
self.dataset.set_kwargs(**self.kwargs)
|
||||
# batch sampler
|
||||
if batch_sampler is None:
|
||||
self._batch_sampler = DistributedBatchSampler(
|
||||
self.dataset,
|
||||
batch_size=self.batch_size,
|
||||
shuffle=self.shuffle,
|
||||
drop_last=self.drop_last)
|
||||
else:
|
||||
self._batch_sampler = batch_sampler
|
||||
|
||||
# DataLoader do not start sub-process in Windows and Mac
|
||||
# system, do not need to use shared memory
|
||||
use_shared_memory = self.use_shared_memory and \
|
||||
sys.platform not in ['win32', 'darwin']
|
||||
# check whether shared memory size is bigger than 1G(1024M)
|
||||
if use_shared_memory:
|
||||
shm_size = _get_shared_memory_size_in_M()
|
||||
if shm_size is not None and shm_size < 1024.:
|
||||
logger.warning("Shared memory size is less than 1G, "
|
||||
"disable shared_memory in DataLoader")
|
||||
use_shared_memory = False
|
||||
|
||||
self.dataloader = DataLoader(
|
||||
dataset=self.dataset,
|
||||
batch_sampler=self._batch_sampler,
|
||||
collate_fn=self._batch_transforms,
|
||||
num_workers=worker_num,
|
||||
return_list=return_list,
|
||||
use_shared_memory=use_shared_memory)
|
||||
self.loader = iter(self.dataloader)
|
||||
|
||||
return self
|
||||
|
||||
def __len__(self):
|
||||
return len(self._batch_sampler)
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
try:
|
||||
return next(self.loader)
|
||||
except StopIteration:
|
||||
self.loader = iter(self.dataloader)
|
||||
six.reraise(*sys.exc_info())
|
||||
|
||||
def next(self):
|
||||
# python2 compatibility
|
||||
return self.__next__()
|
||||
|
||||
|
||||
@register
|
||||
class TrainReader(BaseDataLoader):
|
||||
__shared__ = ['num_classes']
|
||||
|
||||
def __init__(self,
|
||||
sample_transforms=[],
|
||||
batch_transforms=[],
|
||||
batch_size=1,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
num_classes=80,
|
||||
collate_batch=True,
|
||||
**kwargs):
|
||||
super(TrainReader, self).__init__(sample_transforms, batch_transforms,
|
||||
batch_size, shuffle, drop_last,
|
||||
num_classes, collate_batch, **kwargs)
|
||||
|
||||
|
||||
@register
|
||||
class EvalReader(BaseDataLoader):
|
||||
__shared__ = ['num_classes']
|
||||
|
||||
def __init__(self,
|
||||
sample_transforms=[],
|
||||
batch_transforms=[],
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
drop_last=False,
|
||||
num_classes=80,
|
||||
**kwargs):
|
||||
super(EvalReader, self).__init__(sample_transforms, batch_transforms,
|
||||
batch_size, shuffle, drop_last,
|
||||
num_classes, **kwargs)
|
||||
|
||||
|
||||
@register
|
||||
class TestReader(BaseDataLoader):
|
||||
__shared__ = ['num_classes']
|
||||
|
||||
def __init__(self,
|
||||
sample_transforms=[],
|
||||
batch_transforms=[],
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
drop_last=False,
|
||||
num_classes=80,
|
||||
**kwargs):
|
||||
super(TestReader, self).__init__(sample_transforms, batch_transforms,
|
||||
batch_size, shuffle, drop_last,
|
||||
num_classes, **kwargs)
|
||||
|
||||
|
||||
@register
|
||||
class EvalMOTReader(BaseDataLoader):
|
||||
__shared__ = ['num_classes']
|
||||
|
||||
def __init__(self,
|
||||
sample_transforms=[],
|
||||
batch_transforms=[],
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
drop_last=False,
|
||||
num_classes=1,
|
||||
**kwargs):
|
||||
super(EvalMOTReader, self).__init__(sample_transforms, batch_transforms,
|
||||
batch_size, shuffle, drop_last,
|
||||
num_classes, **kwargs)
|
||||
|
||||
|
||||
@register
|
||||
class TestMOTReader(BaseDataLoader):
|
||||
__shared__ = ['num_classes']
|
||||
|
||||
def __init__(self,
|
||||
sample_transforms=[],
|
||||
batch_transforms=[],
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
drop_last=False,
|
||||
num_classes=1,
|
||||
**kwargs):
|
||||
super(TestMOTReader, self).__init__(sample_transforms, batch_transforms,
|
||||
batch_size, shuffle, drop_last,
|
||||
num_classes, **kwargs)
|
||||
|
||||
|
||||
# For Semi-Supervised Object Detection (SSOD)
|
||||
class Compose_SSOD(object):
|
||||
def __init__(self, base_transforms, weak_aug, strong_aug, num_classes=80):
|
||||
self.base_transforms = base_transforms
|
||||
self.base_transforms_cls = []
|
||||
for t in self.base_transforms:
|
||||
for k, v in t.items():
|
||||
op_cls = getattr(transform, k)
|
||||
f = op_cls(**v)
|
||||
if hasattr(f, 'num_classes'):
|
||||
f.num_classes = num_classes
|
||||
self.base_transforms_cls.append(f)
|
||||
|
||||
self.weak_augs = weak_aug
|
||||
self.weak_augs_cls = []
|
||||
for t in self.weak_augs:
|
||||
for k, v in t.items():
|
||||
op_cls = getattr(transform, k)
|
||||
f = op_cls(**v)
|
||||
if hasattr(f, 'num_classes'):
|
||||
f.num_classes = num_classes
|
||||
self.weak_augs_cls.append(f)
|
||||
|
||||
self.strong_augs = strong_aug
|
||||
self.strong_augs_cls = []
|
||||
for t in self.strong_augs:
|
||||
for k, v in t.items():
|
||||
op_cls = getattr(transform, k)
|
||||
f = op_cls(**v)
|
||||
if hasattr(f, 'num_classes'):
|
||||
f.num_classes = num_classes
|
||||
self.strong_augs_cls.append(f)
|
||||
|
||||
def __call__(self, data):
|
||||
for f in self.base_transforms_cls:
|
||||
try:
|
||||
data = f(data)
|
||||
except Exception as e:
|
||||
stack_info = traceback.format_exc()
|
||||
logger.warning("fail to map sample transform [{}] "
|
||||
"with error: {} and stack:\n{}".format(
|
||||
f, e, str(stack_info)))
|
||||
raise e
|
||||
|
||||
weak_data = deepcopy(data)
|
||||
strong_data = deepcopy(data)
|
||||
for f in self.weak_augs_cls:
|
||||
try:
|
||||
weak_data = f(weak_data)
|
||||
except Exception as e:
|
||||
stack_info = traceback.format_exc()
|
||||
logger.warning("fail to map weak aug [{}] "
|
||||
"with error: {} and stack:\n{}".format(
|
||||
f, e, str(stack_info)))
|
||||
raise e
|
||||
|
||||
for f in self.strong_augs_cls:
|
||||
try:
|
||||
strong_data = f(strong_data)
|
||||
except Exception as e:
|
||||
stack_info = traceback.format_exc()
|
||||
logger.warning("fail to map strong aug [{}] "
|
||||
"with error: {} and stack:\n{}".format(
|
||||
f, e, str(stack_info)))
|
||||
raise e
|
||||
|
||||
weak_data['strong_aug'] = strong_data
|
||||
return weak_data
|
||||
|
||||
|
||||
class BatchCompose_SSOD(Compose):
|
||||
def __init__(self, transforms, num_classes=80, collate_batch=True):
|
||||
super(BatchCompose_SSOD, self).__init__(transforms, num_classes)
|
||||
self.collate_batch = collate_batch
|
||||
|
||||
def __call__(self, data):
|
||||
# split strong_data from data(weak_data)
|
||||
strong_data = []
|
||||
for sample in data:
|
||||
strong_data.append(sample['strong_aug'])
|
||||
sample.pop('strong_aug')
|
||||
|
||||
for f in self.transforms_cls:
|
||||
try:
|
||||
data = f(data)
|
||||
if 'BatchRandomResizeForSSOD' in f._id:
|
||||
strong_data = f(strong_data, data[1])[0]
|
||||
data = data[0]
|
||||
else:
|
||||
strong_data = f(strong_data)
|
||||
except Exception as e:
|
||||
stack_info = traceback.format_exc()
|
||||
logger.warning("fail to map batch transform [{}] "
|
||||
"with error: {} and stack:\n{}".format(
|
||||
f, e, str(stack_info)))
|
||||
raise e
|
||||
|
||||
# remove keys which is not needed by model
|
||||
extra_key = ['h', 'w', 'flipped']
|
||||
for k in extra_key:
|
||||
for sample in data:
|
||||
if k in sample:
|
||||
sample.pop(k)
|
||||
for sample in strong_data:
|
||||
if k in sample:
|
||||
sample.pop(k)
|
||||
|
||||
# batch data, if user-define batch function needed
|
||||
# use user-defined here
|
||||
if self.collate_batch:
|
||||
batch_data = default_collate_fn(data)
|
||||
strong_batch_data = default_collate_fn(strong_data)
|
||||
return batch_data, strong_batch_data
|
||||
else:
|
||||
batch_data = {}
|
||||
for k in data[0].keys():
|
||||
tmp_data = []
|
||||
for i in range(len(data)):
|
||||
tmp_data.append(data[i][k])
|
||||
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
|
||||
tmp_data = np.stack(tmp_data, axis=0)
|
||||
batch_data[k] = tmp_data
|
||||
|
||||
strong_batch_data = {}
|
||||
for k in strong_data[0].keys():
|
||||
tmp_data = []
|
||||
for i in range(len(strong_data)):
|
||||
tmp_data.append(strong_data[i][k])
|
||||
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
|
||||
tmp_data = np.stack(tmp_data, axis=0)
|
||||
strong_batch_data[k] = tmp_data
|
||||
|
||||
return batch_data, strong_batch_data
|
||||
|
||||
|
||||
class CombineSSODLoader(object):
|
||||
def __init__(self, label_loader, unlabel_loader):
|
||||
self.label_loader = label_loader
|
||||
self.unlabel_loader = unlabel_loader
|
||||
|
||||
def __iter__(self):
|
||||
while True:
|
||||
try:
|
||||
label_samples = next(self.label_loader_iter)
|
||||
except:
|
||||
self.label_loader_iter = iter(self.label_loader)
|
||||
label_samples = next(self.label_loader_iter)
|
||||
|
||||
try:
|
||||
unlabel_samples = next(self.unlabel_loader_iter)
|
||||
except:
|
||||
self.unlabel_loader_iter = iter(self.unlabel_loader)
|
||||
unlabel_samples = next(self.unlabel_loader_iter)
|
||||
|
||||
yield (
|
||||
label_samples[0], # sup weak
|
||||
label_samples[1], # sup strong
|
||||
unlabel_samples[0], # unsup weak
|
||||
unlabel_samples[1] # unsup strong
|
||||
)
|
||||
|
||||
def __call__(self):
|
||||
return self.__iter__()
|
||||
|
||||
|
||||
class BaseSemiDataLoader(object):
|
||||
def __init__(self,
|
||||
sample_transforms=[],
|
||||
weak_aug=[],
|
||||
strong_aug=[],
|
||||
sup_batch_transforms=[],
|
||||
unsup_batch_transforms=[],
|
||||
sup_batch_size=1,
|
||||
unsup_batch_size=1,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
num_classes=80,
|
||||
collate_batch=True,
|
||||
use_shared_memory=False,
|
||||
**kwargs):
|
||||
# sup transforms
|
||||
self._sample_transforms_label = Compose_SSOD(
|
||||
sample_transforms, weak_aug, strong_aug, num_classes=num_classes)
|
||||
self._batch_transforms_label = BatchCompose_SSOD(
|
||||
sup_batch_transforms, num_classes, collate_batch)
|
||||
self.batch_size_label = sup_batch_size
|
||||
|
||||
# unsup transforms
|
||||
self._sample_transforms_unlabel = Compose_SSOD(
|
||||
sample_transforms, weak_aug, strong_aug, num_classes=num_classes)
|
||||
self._batch_transforms_unlabel = BatchCompose_SSOD(
|
||||
unsup_batch_transforms, num_classes, collate_batch)
|
||||
self.batch_size_unlabel = unsup_batch_size
|
||||
|
||||
# common
|
||||
self.shuffle = shuffle
|
||||
self.drop_last = drop_last
|
||||
self.use_shared_memory = use_shared_memory
|
||||
self.kwargs = kwargs
|
||||
|
||||
def __call__(self,
|
||||
dataset_label,
|
||||
dataset_unlabel,
|
||||
worker_num,
|
||||
batch_sampler_label=None,
|
||||
batch_sampler_unlabel=None,
|
||||
return_list=False):
|
||||
# sup dataset
|
||||
self.dataset_label = dataset_label
|
||||
self.dataset_label.check_or_download_dataset()
|
||||
self.dataset_label.parse_dataset()
|
||||
self.dataset_label.set_transform(self._sample_transforms_label)
|
||||
self.dataset_label.set_kwargs(**self.kwargs)
|
||||
if batch_sampler_label is None:
|
||||
self._batch_sampler_label = DistributedBatchSampler(
|
||||
self.dataset_label,
|
||||
batch_size=self.batch_size_label,
|
||||
shuffle=self.shuffle,
|
||||
drop_last=self.drop_last)
|
||||
else:
|
||||
self._batch_sampler_label = batch_sampler_label
|
||||
|
||||
# unsup dataset
|
||||
self.dataset_unlabel = dataset_unlabel
|
||||
self.dataset_unlabel.length = self.dataset_label.__len__()
|
||||
self.dataset_unlabel.check_or_download_dataset()
|
||||
self.dataset_unlabel.parse_dataset()
|
||||
self.dataset_unlabel.set_transform(self._sample_transforms_unlabel)
|
||||
self.dataset_unlabel.set_kwargs(**self.kwargs)
|
||||
if batch_sampler_unlabel is None:
|
||||
self._batch_sampler_unlabel = DistributedBatchSampler(
|
||||
self.dataset_unlabel,
|
||||
batch_size=self.batch_size_unlabel,
|
||||
shuffle=self.shuffle,
|
||||
drop_last=self.drop_last)
|
||||
else:
|
||||
self._batch_sampler_unlabel = batch_sampler_unlabel
|
||||
|
||||
# DataLoader do not start sub-process in Windows and Mac
|
||||
# system, do not need to use shared memory
|
||||
use_shared_memory = self.use_shared_memory and \
|
||||
sys.platform not in ['win32', 'darwin']
|
||||
# check whether shared memory size is bigger than 1G(1024M)
|
||||
if use_shared_memory:
|
||||
shm_size = _get_shared_memory_size_in_M()
|
||||
if shm_size is not None and shm_size < 1024.:
|
||||
logger.warning("Shared memory size is less than 1G, "
|
||||
"disable shared_memory in DataLoader")
|
||||
use_shared_memory = False
|
||||
|
||||
self.dataloader_label = DataLoader(
|
||||
dataset=self.dataset_label,
|
||||
batch_sampler=self._batch_sampler_label,
|
||||
collate_fn=self._batch_transforms_label,
|
||||
num_workers=worker_num,
|
||||
return_list=return_list,
|
||||
use_shared_memory=use_shared_memory)
|
||||
|
||||
self.dataloader_unlabel = DataLoader(
|
||||
dataset=self.dataset_unlabel,
|
||||
batch_sampler=self._batch_sampler_unlabel,
|
||||
collate_fn=self._batch_transforms_unlabel,
|
||||
num_workers=worker_num,
|
||||
return_list=return_list,
|
||||
use_shared_memory=use_shared_memory)
|
||||
|
||||
self.dataloader = CombineSSODLoader(self.dataloader_label,
|
||||
self.dataloader_unlabel)
|
||||
self.loader = iter(self.dataloader)
|
||||
return self
|
||||
|
||||
def __len__(self):
|
||||
return len(self._batch_sampler_label)
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
return next(self.loader)
|
||||
|
||||
def next(self):
|
||||
# python2 compatibility
|
||||
return self.__next__()
|
||||
|
||||
|
||||
@register
|
||||
class SemiTrainReader(BaseSemiDataLoader):
|
||||
__shared__ = ['num_classes']
|
||||
|
||||
def __init__(self,
|
||||
sample_transforms=[],
|
||||
weak_aug=[],
|
||||
strong_aug=[],
|
||||
sup_batch_transforms=[],
|
||||
unsup_batch_transforms=[],
|
||||
sup_batch_size=1,
|
||||
unsup_batch_size=1,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
num_classes=80,
|
||||
collate_batch=True,
|
||||
**kwargs):
|
||||
super(SemiTrainReader, self).__init__(
|
||||
sample_transforms, weak_aug, strong_aug, sup_batch_transforms,
|
||||
unsup_batch_transforms, sup_batch_size, unsup_batch_size, shuffle,
|
||||
drop_last, num_classes, collate_batch, **kwargs)
|
||||
Reference in New Issue
Block a user