更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,615 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import traceback
import six
import sys
if sys.version_info >= (3, 0):
pass
else:
pass
import numpy as np
import paddle
import paddle.nn.functional as F
from copy import deepcopy
from paddle.io import DataLoader, DistributedBatchSampler
from .utils import default_collate_fn
from ppdet.core.workspace import register
from . import transform
from .shm_utils import _get_shared_memory_size_in_M
from ppdet.utils.logger import setup_logger
logger = setup_logger('reader')
MAIN_PID = os.getpid()
class Compose(object):
def __init__(self, transforms, num_classes=80):
self.transforms = transforms
self.transforms_cls = []
for t in self.transforms:
for k, v in t.items():
op_cls = getattr(transform, k)
f = op_cls(**v)
if hasattr(f, 'num_classes'):
f.num_classes = num_classes
self.transforms_cls.append(f)
def __call__(self, data):
for f in self.transforms_cls:
try:
data = f(data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map sample transform [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
return data
class BatchCompose(Compose):
def __init__(self, transforms, num_classes=80, collate_batch=True):
super(BatchCompose, self).__init__(transforms, num_classes)
self.collate_batch = collate_batch
def __call__(self, data):
for f in self.transforms_cls:
try:
data = f(data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map batch transform [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
# remove keys which is not needed by model
extra_key = ['h', 'w', 'flipped']
for k in extra_key:
for sample in data:
if k in sample:
sample.pop(k)
# batch data, if user-define batch function needed
# use user-defined here
if self.collate_batch:
batch_data = default_collate_fn(data)
else:
batch_data = {}
for k in data[0].keys():
tmp_data = []
for i in range(len(data)):
tmp_data.append(data[i][k])
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
tmp_data = np.stack(tmp_data, axis=0)
batch_data[k] = tmp_data
return batch_data
class BaseDataLoader(object):
"""
Base DataLoader implementation for detection models
Args:
sample_transforms (list): a list of transforms to perform
on each sample
batch_transforms (list): a list of transforms to perform
on batch
batch_size (int): batch size for batch collating, default 1.
shuffle (bool): whether to shuffle samples
drop_last (bool): whether to drop the last incomplete,
default False
num_classes (int): class number of dataset, default 80
collate_batch (bool): whether to collate batch in dataloader.
If set to True, the samples will collate into batch according
to the batch size. Otherwise, the ground-truth will not collate,
which is used when the number of ground-truch is different in
samples.
use_shared_memory (bool): whether to use shared memory to
accelerate data loading, enable this only if you
are sure that the shared memory size of your OS
is larger than memory cost of input datas of model.
Note that shared memory will be automatically
disabled if the shared memory of OS is less than
1G, which is not enough for detection models.
Default False.
"""
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=80,
collate_batch=True,
use_shared_memory=False,
**kwargs):
# sample transform
self._sample_transforms = Compose(
sample_transforms, num_classes=num_classes)
# batch transfrom
self._batch_transforms = BatchCompose(batch_transforms, num_classes,
collate_batch)
self.batch_size = batch_size
self.shuffle = shuffle
self.drop_last = drop_last
self.use_shared_memory = use_shared_memory
self.kwargs = kwargs
def __call__(self,
dataset,
worker_num,
batch_sampler=None,
return_list=False):
self.dataset = dataset
self.dataset.check_or_download_dataset()
self.dataset.parse_dataset()
# get data
self.dataset.set_transform(self._sample_transforms)
# set kwargs
self.dataset.set_kwargs(**self.kwargs)
# batch sampler
if batch_sampler is None:
self._batch_sampler = DistributedBatchSampler(
self.dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
drop_last=self.drop_last)
else:
self._batch_sampler = batch_sampler
# DataLoader do not start sub-process in Windows and Mac
# system, do not need to use shared memory
use_shared_memory = self.use_shared_memory and \
sys.platform not in ['win32', 'darwin']
# check whether shared memory size is bigger than 1G(1024M)
if use_shared_memory:
shm_size = _get_shared_memory_size_in_M()
if shm_size is not None and shm_size < 1024.:
logger.warning("Shared memory size is less than 1G, "
"disable shared_memory in DataLoader")
use_shared_memory = False
self.dataloader = DataLoader(
dataset=self.dataset,
batch_sampler=self._batch_sampler,
collate_fn=self._batch_transforms,
num_workers=worker_num,
return_list=return_list,
use_shared_memory=use_shared_memory)
self.loader = iter(self.dataloader)
return self
def __len__(self):
return len(self._batch_sampler)
def __iter__(self):
return self
def __next__(self):
try:
return next(self.loader)
except StopIteration:
self.loader = iter(self.dataloader)
six.reraise(*sys.exc_info())
def next(self):
# python2 compatibility
return self.__next__()
@register
class TrainReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=True,
drop_last=True,
num_classes=80,
collate_batch=True,
**kwargs):
super(TrainReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, collate_batch, **kwargs)
@register
class EvalReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=80,
**kwargs):
super(EvalReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)
@register
class TestReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=80,
**kwargs):
super(TestReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)
@register
class EvalMOTReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=1,
**kwargs):
super(EvalMOTReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)
@register
class TestMOTReader(BaseDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
batch_transforms=[],
batch_size=1,
shuffle=False,
drop_last=False,
num_classes=1,
**kwargs):
super(TestMOTReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)
# For Semi-Supervised Object Detection (SSOD)
class Compose_SSOD(object):
def __init__(self, base_transforms, weak_aug, strong_aug, num_classes=80):
self.base_transforms = base_transforms
self.base_transforms_cls = []
for t in self.base_transforms:
for k, v in t.items():
op_cls = getattr(transform, k)
f = op_cls(**v)
if hasattr(f, 'num_classes'):
f.num_classes = num_classes
self.base_transforms_cls.append(f)
self.weak_augs = weak_aug
self.weak_augs_cls = []
for t in self.weak_augs:
for k, v in t.items():
op_cls = getattr(transform, k)
f = op_cls(**v)
if hasattr(f, 'num_classes'):
f.num_classes = num_classes
self.weak_augs_cls.append(f)
self.strong_augs = strong_aug
self.strong_augs_cls = []
for t in self.strong_augs:
for k, v in t.items():
op_cls = getattr(transform, k)
f = op_cls(**v)
if hasattr(f, 'num_classes'):
f.num_classes = num_classes
self.strong_augs_cls.append(f)
def __call__(self, data):
for f in self.base_transforms_cls:
try:
data = f(data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map sample transform [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
weak_data = deepcopy(data)
strong_data = deepcopy(data)
for f in self.weak_augs_cls:
try:
weak_data = f(weak_data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map weak aug [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
for f in self.strong_augs_cls:
try:
strong_data = f(strong_data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map strong aug [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
weak_data['strong_aug'] = strong_data
return weak_data
class BatchCompose_SSOD(Compose):
def __init__(self, transforms, num_classes=80, collate_batch=True):
super(BatchCompose_SSOD, self).__init__(transforms, num_classes)
self.collate_batch = collate_batch
def __call__(self, data):
# split strong_data from data(weak_data)
strong_data = []
for sample in data:
strong_data.append(sample['strong_aug'])
sample.pop('strong_aug')
for f in self.transforms_cls:
try:
data = f(data)
if 'BatchRandomResizeForSSOD' in f._id:
strong_data = f(strong_data, data[1])[0]
data = data[0]
else:
strong_data = f(strong_data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map batch transform [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
# remove keys which is not needed by model
extra_key = ['h', 'w', 'flipped']
for k in extra_key:
for sample in data:
if k in sample:
sample.pop(k)
for sample in strong_data:
if k in sample:
sample.pop(k)
# batch data, if user-define batch function needed
# use user-defined here
if self.collate_batch:
batch_data = default_collate_fn(data)
strong_batch_data = default_collate_fn(strong_data)
return batch_data, strong_batch_data
else:
batch_data = {}
for k in data[0].keys():
tmp_data = []
for i in range(len(data)):
tmp_data.append(data[i][k])
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
tmp_data = np.stack(tmp_data, axis=0)
batch_data[k] = tmp_data
strong_batch_data = {}
for k in strong_data[0].keys():
tmp_data = []
for i in range(len(strong_data)):
tmp_data.append(strong_data[i][k])
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
tmp_data = np.stack(tmp_data, axis=0)
strong_batch_data[k] = tmp_data
return batch_data, strong_batch_data
class CombineSSODLoader(object):
def __init__(self, label_loader, unlabel_loader):
self.label_loader = label_loader
self.unlabel_loader = unlabel_loader
def __iter__(self):
while True:
try:
label_samples = next(self.label_loader_iter)
except:
self.label_loader_iter = iter(self.label_loader)
label_samples = next(self.label_loader_iter)
try:
unlabel_samples = next(self.unlabel_loader_iter)
except:
self.unlabel_loader_iter = iter(self.unlabel_loader)
unlabel_samples = next(self.unlabel_loader_iter)
yield (
label_samples[0], # sup weak
label_samples[1], # sup strong
unlabel_samples[0], # unsup weak
unlabel_samples[1] # unsup strong
)
def __call__(self):
return self.__iter__()
class BaseSemiDataLoader(object):
def __init__(self,
sample_transforms=[],
weak_aug=[],
strong_aug=[],
sup_batch_transforms=[],
unsup_batch_transforms=[],
sup_batch_size=1,
unsup_batch_size=1,
shuffle=True,
drop_last=True,
num_classes=80,
collate_batch=True,
use_shared_memory=False,
**kwargs):
# sup transforms
self._sample_transforms_label = Compose_SSOD(
sample_transforms, weak_aug, strong_aug, num_classes=num_classes)
self._batch_transforms_label = BatchCompose_SSOD(
sup_batch_transforms, num_classes, collate_batch)
self.batch_size_label = sup_batch_size
# unsup transforms
self._sample_transforms_unlabel = Compose_SSOD(
sample_transforms, weak_aug, strong_aug, num_classes=num_classes)
self._batch_transforms_unlabel = BatchCompose_SSOD(
unsup_batch_transforms, num_classes, collate_batch)
self.batch_size_unlabel = unsup_batch_size
# common
self.shuffle = shuffle
self.drop_last = drop_last
self.use_shared_memory = use_shared_memory
self.kwargs = kwargs
def __call__(self,
dataset_label,
dataset_unlabel,
worker_num,
batch_sampler_label=None,
batch_sampler_unlabel=None,
return_list=False):
# sup dataset
self.dataset_label = dataset_label
self.dataset_label.check_or_download_dataset()
self.dataset_label.parse_dataset()
self.dataset_label.set_transform(self._sample_transforms_label)
self.dataset_label.set_kwargs(**self.kwargs)
if batch_sampler_label is None:
self._batch_sampler_label = DistributedBatchSampler(
self.dataset_label,
batch_size=self.batch_size_label,
shuffle=self.shuffle,
drop_last=self.drop_last)
else:
self._batch_sampler_label = batch_sampler_label
# unsup dataset
self.dataset_unlabel = dataset_unlabel
self.dataset_unlabel.length = self.dataset_label.__len__()
self.dataset_unlabel.check_or_download_dataset()
self.dataset_unlabel.parse_dataset()
self.dataset_unlabel.set_transform(self._sample_transforms_unlabel)
self.dataset_unlabel.set_kwargs(**self.kwargs)
if batch_sampler_unlabel is None:
self._batch_sampler_unlabel = DistributedBatchSampler(
self.dataset_unlabel,
batch_size=self.batch_size_unlabel,
shuffle=self.shuffle,
drop_last=self.drop_last)
else:
self._batch_sampler_unlabel = batch_sampler_unlabel
# DataLoader do not start sub-process in Windows and Mac
# system, do not need to use shared memory
use_shared_memory = self.use_shared_memory and \
sys.platform not in ['win32', 'darwin']
# check whether shared memory size is bigger than 1G(1024M)
if use_shared_memory:
shm_size = _get_shared_memory_size_in_M()
if shm_size is not None and shm_size < 1024.:
logger.warning("Shared memory size is less than 1G, "
"disable shared_memory in DataLoader")
use_shared_memory = False
self.dataloader_label = DataLoader(
dataset=self.dataset_label,
batch_sampler=self._batch_sampler_label,
collate_fn=self._batch_transforms_label,
num_workers=worker_num,
return_list=return_list,
use_shared_memory=use_shared_memory)
self.dataloader_unlabel = DataLoader(
dataset=self.dataset_unlabel,
batch_sampler=self._batch_sampler_unlabel,
collate_fn=self._batch_transforms_unlabel,
num_workers=worker_num,
return_list=return_list,
use_shared_memory=use_shared_memory)
self.dataloader = CombineSSODLoader(self.dataloader_label,
self.dataloader_unlabel)
self.loader = iter(self.dataloader)
return self
def __len__(self):
return len(self._batch_sampler_label)
def __iter__(self):
return self
def __next__(self):
return next(self.loader)
def next(self):
# python2 compatibility
return self.__next__()
@register
class SemiTrainReader(BaseSemiDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
weak_aug=[],
strong_aug=[],
sup_batch_transforms=[],
unsup_batch_transforms=[],
sup_batch_size=1,
unsup_batch_size=1,
shuffle=True,
drop_last=True,
num_classes=80,
collate_batch=True,
**kwargs):
super(SemiTrainReader, self).__init__(
sample_transforms, weak_aug, strong_aug, sup_batch_transforms,
unsup_batch_transforms, sup_batch_size, unsup_batch_size, shuffle,
drop_last, num_classes, collate_batch, **kwargs)