更换文档检测模型
This commit is contained in:
307
paddle_detection/ppdet/data/source/dataset.py
Normal file
307
paddle_detection/ppdet/data/source/dataset.py
Normal file
@@ -0,0 +1,307 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import copy
|
||||
import numpy as np
|
||||
try:
|
||||
from collections.abc import Sequence
|
||||
except Exception:
|
||||
from collections import Sequence
|
||||
from paddle.io import Dataset
|
||||
from ppdet.core.workspace import register, serializable
|
||||
from ppdet.utils.download import get_dataset_path
|
||||
from ppdet.data import source
|
||||
|
||||
from ppdet.utils.logger import setup_logger
|
||||
logger = setup_logger(__name__)
|
||||
|
||||
|
||||
@serializable
|
||||
class DetDataset(Dataset):
|
||||
"""
|
||||
Load detection dataset.
|
||||
|
||||
Args:
|
||||
dataset_dir (str): root directory for dataset.
|
||||
image_dir (str): directory for images.
|
||||
anno_path (str): annotation file path.
|
||||
data_fields (list): key name of data dictionary, at least have 'image'.
|
||||
sample_num (int): number of samples to load, -1 means all.
|
||||
use_default_label (bool): whether to load default label list.
|
||||
repeat (int): repeat times for dataset, use in benchmark.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
dataset_dir=None,
|
||||
image_dir=None,
|
||||
anno_path=None,
|
||||
data_fields=['image'],
|
||||
sample_num=-1,
|
||||
use_default_label=None,
|
||||
repeat=1,
|
||||
**kwargs):
|
||||
super(DetDataset, self).__init__()
|
||||
self.dataset_dir = dataset_dir if dataset_dir is not None else ''
|
||||
self.anno_path = anno_path
|
||||
self.image_dir = image_dir if image_dir is not None else ''
|
||||
self.data_fields = data_fields
|
||||
self.sample_num = sample_num
|
||||
self.use_default_label = use_default_label
|
||||
self.repeat = repeat
|
||||
self._epoch = 0
|
||||
self._curr_iter = 0
|
||||
|
||||
def __len__(self, ):
|
||||
return len(self.roidbs) * self.repeat
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self
|
||||
|
||||
def __getitem__(self, idx):
|
||||
n = len(self.roidbs)
|
||||
if self.repeat > 1:
|
||||
idx %= n
|
||||
# data batch
|
||||
roidb = copy.deepcopy(self.roidbs[idx])
|
||||
if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch:
|
||||
idx = np.random.randint(n)
|
||||
roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
|
||||
elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch:
|
||||
idx = np.random.randint(n)
|
||||
roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
|
||||
elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch:
|
||||
roidb = [roidb, ] + [
|
||||
copy.deepcopy(self.roidbs[np.random.randint(n)])
|
||||
for _ in range(4)
|
||||
]
|
||||
elif self.pre_img_epoch == 0 or self._epoch < self.pre_img_epoch:
|
||||
# Add previous image as input, only used in CenterTrack
|
||||
idx_pre_img = idx - 1
|
||||
if idx_pre_img < 0:
|
||||
idx_pre_img = idx + 1
|
||||
roidb = [roidb, ] + [copy.deepcopy(self.roidbs[idx_pre_img])]
|
||||
if isinstance(roidb, Sequence):
|
||||
for r in roidb:
|
||||
r['curr_iter'] = self._curr_iter
|
||||
else:
|
||||
roidb['curr_iter'] = self._curr_iter
|
||||
self._curr_iter += 1
|
||||
|
||||
return self.transform(roidb)
|
||||
|
||||
def check_or_download_dataset(self):
|
||||
self.dataset_dir = get_dataset_path(self.dataset_dir, self.anno_path,
|
||||
self.image_dir)
|
||||
|
||||
def set_kwargs(self, **kwargs):
|
||||
self.mixup_epoch = kwargs.get('mixup_epoch', -1)
|
||||
self.cutmix_epoch = kwargs.get('cutmix_epoch', -1)
|
||||
self.mosaic_epoch = kwargs.get('mosaic_epoch', -1)
|
||||
self.pre_img_epoch = kwargs.get('pre_img_epoch', -1)
|
||||
|
||||
def set_transform(self, transform):
|
||||
self.transform = transform
|
||||
|
||||
def set_epoch(self, epoch_id):
|
||||
self._epoch = epoch_id
|
||||
|
||||
def parse_dataset(self, ):
|
||||
raise NotImplementedError(
|
||||
"Need to implement parse_dataset method of Dataset")
|
||||
|
||||
def get_anno(self):
|
||||
if self.anno_path is None:
|
||||
return
|
||||
return os.path.join(self.dataset_dir, self.anno_path)
|
||||
|
||||
|
||||
def _is_valid_file(f, extensions=('.jpg', '.jpeg', '.png', '.bmp')):
|
||||
return f.lower().endswith(extensions)
|
||||
|
||||
|
||||
def _make_dataset(dir):
|
||||
dir = os.path.expanduser(dir)
|
||||
if not os.path.isdir(dir):
|
||||
raise ('{} should be a dir'.format(dir))
|
||||
images = []
|
||||
for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
|
||||
for fname in sorted(fnames):
|
||||
path = os.path.join(root, fname)
|
||||
if _is_valid_file(path):
|
||||
images.append(path)
|
||||
return images
|
||||
|
||||
|
||||
@register
|
||||
@serializable
|
||||
class ImageFolder(DetDataset):
|
||||
def __init__(self,
|
||||
dataset_dir=None,
|
||||
image_dir=None,
|
||||
anno_path=None,
|
||||
sample_num=-1,
|
||||
use_default_label=None,
|
||||
**kwargs):
|
||||
super(ImageFolder, self).__init__(
|
||||
dataset_dir,
|
||||
image_dir,
|
||||
anno_path,
|
||||
sample_num=sample_num,
|
||||
use_default_label=use_default_label)
|
||||
self._imid2path = {}
|
||||
self.roidbs = None
|
||||
self.sample_num = sample_num
|
||||
|
||||
def check_or_download_dataset(self):
|
||||
return
|
||||
|
||||
def get_anno(self):
|
||||
if self.anno_path is None:
|
||||
return
|
||||
if self.dataset_dir:
|
||||
return os.path.join(self.dataset_dir, self.anno_path)
|
||||
else:
|
||||
return self.anno_path
|
||||
|
||||
def parse_dataset(self, ):
|
||||
if not self.roidbs:
|
||||
self.roidbs = self._load_images()
|
||||
|
||||
def _parse(self):
|
||||
image_dir = self.image_dir
|
||||
if not isinstance(image_dir, Sequence):
|
||||
image_dir = [image_dir]
|
||||
images = []
|
||||
for im_dir in image_dir:
|
||||
if os.path.isdir(im_dir):
|
||||
im_dir = os.path.join(self.dataset_dir, im_dir)
|
||||
images.extend(_make_dataset(im_dir))
|
||||
elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
|
||||
images.append(im_dir)
|
||||
return images
|
||||
|
||||
def _load_images(self):
|
||||
images = self._parse()
|
||||
ct = 0
|
||||
records = []
|
||||
for image in images:
|
||||
assert image != '' and os.path.isfile(image), \
|
||||
"Image {} not found".format(image)
|
||||
if self.sample_num > 0 and ct >= self.sample_num:
|
||||
break
|
||||
rec = {'im_id': np.array([ct]), 'im_file': image}
|
||||
self._imid2path[ct] = image
|
||||
ct += 1
|
||||
records.append(rec)
|
||||
assert len(records) > 0, "No image file found"
|
||||
return records
|
||||
|
||||
def get_imid2path(self):
|
||||
return self._imid2path
|
||||
|
||||
def set_images(self, images):
|
||||
self.image_dir = images
|
||||
self.roidbs = self._load_images()
|
||||
|
||||
def set_slice_images(self,
|
||||
images,
|
||||
slice_size=[640, 640],
|
||||
overlap_ratio=[0.25, 0.25]):
|
||||
self.image_dir = images
|
||||
ori_records = self._load_images()
|
||||
try:
|
||||
import sahi
|
||||
from sahi.slicing import slice_image
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
'sahi not found, plaese install sahi. '
|
||||
'for example: `pip install sahi`, see https://github.com/obss/sahi.'
|
||||
)
|
||||
raise e
|
||||
|
||||
sub_img_ids = 0
|
||||
ct = 0
|
||||
ct_sub = 0
|
||||
records = []
|
||||
for i, ori_rec in enumerate(ori_records):
|
||||
im_path = ori_rec['im_file']
|
||||
slice_image_result = sahi.slicing.slice_image(
|
||||
image=im_path,
|
||||
slice_height=slice_size[0],
|
||||
slice_width=slice_size[1],
|
||||
overlap_height_ratio=overlap_ratio[0],
|
||||
overlap_width_ratio=overlap_ratio[1])
|
||||
|
||||
sub_img_num = len(slice_image_result)
|
||||
for _ind in range(sub_img_num):
|
||||
im = slice_image_result.images[_ind]
|
||||
rec = {
|
||||
'image': im,
|
||||
'im_id': np.array([sub_img_ids + _ind]),
|
||||
'h': im.shape[0],
|
||||
'w': im.shape[1],
|
||||
'ori_im_id': np.array([ori_rec['im_id'][0]]),
|
||||
'st_pix': np.array(
|
||||
slice_image_result.starting_pixels[_ind],
|
||||
dtype=np.float32),
|
||||
'is_last': 1 if _ind == sub_img_num - 1 else 0,
|
||||
} if 'image' in self.data_fields else {}
|
||||
records.append(rec)
|
||||
ct_sub += sub_img_num
|
||||
ct += 1
|
||||
logger.info('{} samples and slice to {} sub_samples.'.format(ct,
|
||||
ct_sub))
|
||||
self.roidbs = records
|
||||
|
||||
def get_label_list(self):
|
||||
# Only VOC dataset needs label list in ImageFold
|
||||
return self.anno_path
|
||||
|
||||
|
||||
@register
|
||||
class CommonDataset(object):
|
||||
def __init__(self, **dataset_args):
|
||||
super(CommonDataset, self).__init__()
|
||||
dataset_args = copy.deepcopy(dataset_args)
|
||||
type = dataset_args.pop("name")
|
||||
self.dataset = getattr(source, type)(**dataset_args)
|
||||
|
||||
def __call__(self):
|
||||
return self.dataset
|
||||
|
||||
|
||||
@register
|
||||
class TrainDataset(CommonDataset):
|
||||
pass
|
||||
|
||||
|
||||
@register
|
||||
class EvalMOTDataset(CommonDataset):
|
||||
pass
|
||||
|
||||
|
||||
@register
|
||||
class TestMOTDataset(CommonDataset):
|
||||
pass
|
||||
|
||||
|
||||
@register
|
||||
class EvalDataset(CommonDataset):
|
||||
pass
|
||||
|
||||
|
||||
@register
|
||||
class TestDataset(CommonDataset):
|
||||
pass
|
||||
Reference in New Issue
Block a user