更换文档检测模型
This commit is contained in:
72
paddle_detection/ppdet/data/utils.py
Normal file
72
paddle_detection/ppdet/data/utils.py
Normal file
@@ -0,0 +1,72 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
import numbers
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
from collections.abc import Sequence, Mapping
|
||||
except:
|
||||
from collections import Sequence, Mapping
|
||||
|
||||
|
||||
def default_collate_fn(batch):
|
||||
"""
|
||||
Default batch collating function for :code:`paddle.io.DataLoader`,
|
||||
get input data as a list of sample datas, each element in list
|
||||
if the data of a sample, and sample data should composed of list,
|
||||
dictionary, string, number, numpy array, this
|
||||
function will parse input data recursively and stack number,
|
||||
numpy array and paddle.Tensor datas as batch datas. e.g. for
|
||||
following input data:
|
||||
[{'image': np.array(shape=[3, 224, 224]), 'label': 1},
|
||||
{'image': np.array(shape=[3, 224, 224]), 'label': 3},
|
||||
{'image': np.array(shape=[3, 224, 224]), 'label': 4},
|
||||
{'image': np.array(shape=[3, 224, 224]), 'label': 5},]
|
||||
|
||||
|
||||
This default collate function zipped each number and numpy array
|
||||
field together and stack each field as the batch field as follows:
|
||||
{'image': np.array(shape=[4, 3, 224, 224]), 'label': np.array([1, 3, 4, 5])}
|
||||
Args:
|
||||
batch(list of sample data): batch should be a list of sample data.
|
||||
|
||||
Returns:
|
||||
Batched data: batched each number, numpy array and paddle.Tensor
|
||||
in input data.
|
||||
"""
|
||||
sample = batch[0]
|
||||
if isinstance(sample, np.ndarray):
|
||||
batch = np.stack(batch, axis=0)
|
||||
return batch
|
||||
elif isinstance(sample, numbers.Number):
|
||||
batch = np.array(batch)
|
||||
return batch
|
||||
elif isinstance(sample, (str, bytes)):
|
||||
return batch
|
||||
elif isinstance(sample, Mapping):
|
||||
return {
|
||||
key: default_collate_fn([d[key] for d in batch])
|
||||
for key in sample
|
||||
}
|
||||
elif isinstance(sample, Sequence):
|
||||
sample_fields_num = len(sample)
|
||||
if not all(len(sample) == sample_fields_num for sample in iter(batch)):
|
||||
raise RuntimeError(
|
||||
"fileds number not same among samples in a batch")
|
||||
return [default_collate_fn(fields) for fields in zip(*batch)]
|
||||
|
||||
raise TypeError("batch data con only contains: tensor, numpy.ndarray, "
|
||||
"dict, list, number, but got {}".format(type(sample)))
|
||||
Reference in New Issue
Block a user