更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,37 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import trainer
from .trainer import *
from . import trainer_cot
from .trainer_cot import *
from . import callbacks
from .callbacks import *
from . import env
from .env import *
__all__ = trainer.__all__ \
+ callbacks.__all__ \
+ env.__all__
from . import tracker
from .tracker import *
__all__ = __all__ + tracker.__all__
from . import trainer_ssod
from .trainer_ssod import *
__all__ = __all__ + trainer_ssod.__all__

View File

@@ -0,0 +1,693 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import datetime
import six
import copy
import json
import paddle
import paddle.distributed as dist
from ppdet.utils.checkpoint import save_model, save_semi_model
from ppdet.metrics import get_infer_results
from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.engine')
__all__ = [
'Callback', 'ComposeCallback', 'LogPrinter', 'Checkpointer',
'VisualDLWriter', 'SniperProposalsGenerator'
]
class Callback(object):
def __init__(self, model):
self.model = model
def on_step_begin(self, status):
pass
def on_step_end(self, status):
pass
def on_epoch_begin(self, status):
pass
def on_epoch_end(self, status):
pass
def on_train_begin(self, status):
pass
def on_train_end(self, status):
pass
class ComposeCallback(object):
def __init__(self, callbacks):
callbacks = [c for c in list(callbacks) if c is not None]
for c in callbacks:
assert isinstance(
c, Callback), "callback should be subclass of Callback"
self._callbacks = callbacks
def on_step_begin(self, status):
for c in self._callbacks:
c.on_step_begin(status)
def on_step_end(self, status):
for c in self._callbacks:
c.on_step_end(status)
def on_epoch_begin(self, status):
for c in self._callbacks:
c.on_epoch_begin(status)
def on_epoch_end(self, status):
for c in self._callbacks:
c.on_epoch_end(status)
def on_train_begin(self, status):
for c in self._callbacks:
c.on_train_begin(status)
def on_train_end(self, status):
for c in self._callbacks:
c.on_train_end(status)
class LogPrinter(Callback):
def __init__(self, model):
super(LogPrinter, self).__init__(model)
def on_step_end(self, status):
if dist.get_world_size() < 2 or dist.get_rank() == 0:
mode = status['mode']
if mode == 'train':
epoch_id = status['epoch_id']
step_id = status['step_id']
steps_per_epoch = status['steps_per_epoch']
training_staus = status['training_staus']
batch_time = status['batch_time']
data_time = status['data_time']
epoches = self.model.cfg.epoch
batch_size = self.model.cfg['{}Reader'.format(mode.capitalize(
))]['batch_size']
logs = training_staus.log()
space_fmt = ':' + str(len(str(steps_per_epoch))) + 'd'
if step_id % self.model.cfg.log_iter == 0:
eta_steps = (epoches - epoch_id) * steps_per_epoch - step_id
eta_sec = eta_steps * batch_time.global_avg
eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
ips = float(batch_size) / batch_time.avg
fmt = ' '.join([
'Epoch: [{}]',
'[{' + space_fmt + '}/{}]',
'learning_rate: {lr:.6f}',
'{meters}',
'eta: {eta}',
'batch_cost: {btime}',
'data_cost: {dtime}',
'ips: {ips:.4f} images/s',
])
fmt = fmt.format(
epoch_id,
step_id,
steps_per_epoch,
lr=status['learning_rate'],
meters=logs,
eta=eta_str,
btime=str(batch_time),
dtime=str(data_time),
ips=ips)
logger.info(fmt)
if mode == 'eval':
step_id = status['step_id']
if step_id % 100 == 0:
logger.info("Eval iter: {}".format(step_id))
def on_epoch_end(self, status):
if dist.get_world_size() < 2 or dist.get_rank() == 0:
mode = status['mode']
if mode == 'eval':
sample_num = status['sample_num']
cost_time = status['cost_time']
logger.info('Total sample number: {}, average FPS: {}'.format(
sample_num, sample_num / cost_time))
class Checkpointer(Callback):
def __init__(self, model):
super(Checkpointer, self).__init__(model)
self.best_ap = -1000.
self.save_dir = self.model.cfg.save_dir
if hasattr(self.model.model, 'student_model'):
self.weight = self.model.model.student_model
else:
self.weight = self.model.model
def on_epoch_end(self, status):
# Checkpointer only performed during training
mode = status['mode']
epoch_id = status['epoch_id']
weight = None
save_name = None
if dist.get_world_size() < 2 or dist.get_rank() == 0:
if mode == 'train':
end_epoch = self.model.cfg.epoch
if (
epoch_id + 1
) % self.model.cfg.snapshot_epoch == 0 or epoch_id == end_epoch - 1:
save_name = str(
epoch_id) if epoch_id != end_epoch - 1 else "model_final"
weight = self.weight.state_dict()
elif mode == 'eval':
if 'save_best_model' in status and status['save_best_model']:
for metric in self.model._metrics:
map_res = metric.get_results()
eval_func = "ap"
if 'pose3d' in map_res:
key = 'pose3d'
eval_func = "mpjpe"
elif 'bbox' in map_res:
key = 'bbox'
elif 'keypoint' in map_res:
key = 'keypoint'
else:
key = 'mask'
if key not in map_res:
logger.warning("Evaluation results empty, this may be due to " \
"training iterations being too few or not " \
"loading the correct weights.")
return
if map_res[key][0] >= self.best_ap:
self.best_ap = map_res[key][0]
save_name = 'best_model'
weight = self.weight.state_dict()
logger.info("Best test {} {} is {:0.3f}.".format(
key, eval_func, abs(self.best_ap)))
if weight:
if self.model.use_ema:
exchange_save_model = status.get('exchange_save_model',
False)
if not exchange_save_model:
# save model and ema_model
save_model(
status['weight'],
self.model.optimizer,
self.save_dir,
save_name,
epoch_id + 1,
ema_model=weight)
else:
# save model(student model) and ema_model(teacher model)
# in DenseTeacher SSOD, the teacher model will be higher,
# so exchange when saving pdparams
student_model = status['weight'] # model
teacher_model = weight # ema_model
save_model(
teacher_model,
self.model.optimizer,
self.save_dir,
save_name,
epoch_id + 1,
ema_model=student_model)
del teacher_model
del student_model
else:
save_model(weight, self.model.optimizer, self.save_dir,
save_name, epoch_id + 1)
class WiferFaceEval(Callback):
def __init__(self, model):
super(WiferFaceEval, self).__init__(model)
def on_epoch_begin(self, status):
assert self.model.mode == 'eval', \
"WiferFaceEval can only be set during evaluation"
for metric in self.model._metrics:
metric.update(self.model.model)
sys.exit()
class VisualDLWriter(Callback):
"""
Use VisualDL to log data or image
"""
def __init__(self, model):
super(VisualDLWriter, self).__init__(model)
assert six.PY3, "VisualDL requires Python >= 3.5"
try:
from visualdl import LogWriter
except Exception as e:
logger.error('visualdl not found, plaese install visualdl. '
'for example: `pip install visualdl`.')
raise e
self.vdl_writer = LogWriter(
model.cfg.get('vdl_log_dir', 'vdl_log_dir/scalar'))
self.vdl_loss_step = 0
self.vdl_mAP_step = 0
self.vdl_image_step = 0
self.vdl_image_frame = 0
def on_step_end(self, status):
mode = status['mode']
if dist.get_world_size() < 2 or dist.get_rank() == 0:
if mode == 'train':
training_staus = status['training_staus']
for loss_name, loss_value in training_staus.get().items():
self.vdl_writer.add_scalar(loss_name, loss_value,
self.vdl_loss_step)
self.vdl_loss_step += 1
elif mode == 'test':
ori_image = status['original_image']
result_image = status['result_image']
self.vdl_writer.add_image(
"original/frame_{}".format(self.vdl_image_frame), ori_image,
self.vdl_image_step)
self.vdl_writer.add_image(
"result/frame_{}".format(self.vdl_image_frame),
result_image, self.vdl_image_step)
self.vdl_image_step += 1
# each frame can display ten pictures at most.
if self.vdl_image_step % 10 == 0:
self.vdl_image_step = 0
self.vdl_image_frame += 1
def on_epoch_end(self, status):
mode = status['mode']
if dist.get_world_size() < 2 or dist.get_rank() == 0:
if mode == 'eval':
for metric in self.model._metrics:
for key, map_value in metric.get_results().items():
self.vdl_writer.add_scalar("{}-mAP".format(key),
map_value[0],
self.vdl_mAP_step)
self.vdl_mAP_step += 1
class WandbCallback(Callback):
def __init__(self, model):
super(WandbCallback, self).__init__(model)
try:
import wandb
self.wandb = wandb
except Exception as e:
logger.error('wandb not found, please install wandb. '
'Use: `pip install wandb`.')
raise e
self.wandb_params = model.cfg.get('wandb', None)
self.save_dir = self.model.cfg.save_dir
if self.wandb_params is None:
self.wandb_params = {}
for k, v in model.cfg.items():
if k.startswith("wandb_"):
self.wandb_params.update({k.lstrip("wandb_"): v})
self._run = None
if dist.get_world_size() < 2 or dist.get_rank() == 0:
_ = self.run
self.run.config.update(self.model.cfg)
self.run.define_metric("epoch")
self.run.define_metric("eval/*", step_metric="epoch")
self.best_ap = -1000.
self.fps = []
@property
def run(self):
if self._run is None:
if self.wandb.run is not None:
logger.info(
"There is an ongoing wandb run which will be used"
"for logging. Please use `wandb.finish()` to end that"
"if the behaviour is not intended")
self._run = self.wandb.run
else:
self._run = self.wandb.init(**self.wandb_params)
return self._run
def save_model(self,
optimizer,
save_dir,
save_name,
last_epoch,
ema_model=None,
ap=None,
fps=None,
tags=None):
if dist.get_world_size() < 2 or dist.get_rank() == 0:
model_path = os.path.join(save_dir, save_name)
metadata = {}
metadata["last_epoch"] = last_epoch
if ap:
metadata["ap"] = ap
if fps:
metadata["fps"] = fps
if ema_model is None:
ema_artifact = self.wandb.Artifact(
name="ema_model-{}".format(self.run.id),
type="model",
metadata=metadata)
model_artifact = self.wandb.Artifact(
name="model-{}".format(self.run.id),
type="model",
metadata=metadata)
ema_artifact.add_file(model_path + ".pdema", name="model_ema")
model_artifact.add_file(model_path + ".pdparams", name="model")
self.run.log_artifact(ema_artifact, aliases=tags)
self.run.log_artfact(model_artifact, aliases=tags)
else:
model_artifact = self.wandb.Artifact(
name="model-{}".format(self.run.id),
type="model",
metadata=metadata)
model_artifact.add_file(model_path + ".pdparams", name="model")
self.run.log_artifact(model_artifact, aliases=tags)
def on_step_end(self, status):
mode = status['mode']
if dist.get_world_size() < 2 or dist.get_rank() == 0:
if mode == 'train':
training_status = status['training_staus'].get()
for k, v in training_status.items():
training_status[k] = float(v)
# calculate ips, data_cost, batch_cost
batch_time = status['batch_time']
data_time = status['data_time']
batch_size = self.model.cfg['{}Reader'.format(mode.capitalize(
))]['batch_size']
ips = float(batch_size) / float(batch_time.avg)
data_cost = float(data_time.avg)
batch_cost = float(batch_time.avg)
metrics = {"train/" + k: v for k, v in training_status.items()}
metrics["train/ips"] = ips
metrics["train/data_cost"] = data_cost
metrics["train/batch_cost"] = batch_cost
self.fps.append(ips)
self.run.log(metrics)
def on_epoch_end(self, status):
mode = status['mode']
epoch_id = status['epoch_id']
save_name = None
if dist.get_world_size() < 2 or dist.get_rank() == 0:
if mode == 'train':
fps = sum(self.fps) / len(self.fps)
self.fps = []
end_epoch = self.model.cfg.epoch
if (
epoch_id + 1
) % self.model.cfg.snapshot_epoch == 0 or epoch_id == end_epoch - 1:
save_name = str(
epoch_id) if epoch_id != end_epoch - 1 else "model_final"
tags = ["latest", "epoch_{}".format(epoch_id)]
self.save_model(
self.model.optimizer,
self.save_dir,
save_name,
epoch_id + 1,
self.model.use_ema,
fps=fps,
tags=tags)
if mode == 'eval':
sample_num = status['sample_num']
cost_time = status['cost_time']
fps = sample_num / cost_time
merged_dict = {}
for metric in self.model._metrics:
for key, map_value in metric.get_results().items():
merged_dict["eval/{}-mAP".format(key)] = map_value[0]
merged_dict["epoch"] = status["epoch_id"]
merged_dict["eval/fps"] = sample_num / cost_time
self.run.log(merged_dict)
if 'save_best_model' in status and status['save_best_model']:
for metric in self.model._metrics:
map_res = metric.get_results()
if 'pose3d' in map_res:
key = 'pose3d'
elif 'bbox' in map_res:
key = 'bbox'
elif 'keypoint' in map_res:
key = 'keypoint'
else:
key = 'mask'
if key not in map_res:
logger.warning("Evaluation results empty, this may be due to " \
"training iterations being too few or not " \
"loading the correct weights.")
return
if map_res[key][0] >= self.best_ap:
self.best_ap = map_res[key][0]
save_name = 'best_model'
tags = ["best", "epoch_{}".format(epoch_id)]
self.save_model(
self.model.optimizer,
self.save_dir,
save_name,
last_epoch=epoch_id + 1,
ema_model=self.model.use_ema,
ap=abs(self.best_ap),
fps=fps,
tags=tags)
def on_train_end(self, status):
self.run.finish()
class SniperProposalsGenerator(Callback):
def __init__(self, model):
super(SniperProposalsGenerator, self).__init__(model)
ori_dataset = self.model.dataset
self.dataset = self._create_new_dataset(ori_dataset)
self.loader = self.model.loader
self.cfg = self.model.cfg
self.infer_model = self.model.model
def _create_new_dataset(self, ori_dataset):
dataset = copy.deepcopy(ori_dataset)
# init anno_cropper
dataset.init_anno_cropper()
# generate infer roidbs
ori_roidbs = dataset.get_ori_roidbs()
roidbs = dataset.anno_cropper.crop_infer_anno_records(ori_roidbs)
# set new roidbs
dataset.set_roidbs(roidbs)
return dataset
def _eval_with_loader(self, loader):
results = []
with paddle.no_grad():
self.infer_model.eval()
for step_id, data in enumerate(loader):
outs = self.infer_model(data)
for key in ['im_shape', 'scale_factor', 'im_id']:
outs[key] = data[key]
for key, value in outs.items():
if hasattr(value, 'numpy'):
outs[key] = value.numpy()
results.append(outs)
return results
def on_train_end(self, status):
self.loader.dataset = self.dataset
results = self._eval_with_loader(self.loader)
results = self.dataset.anno_cropper.aggregate_chips_detections(results)
# sniper
proposals = []
clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()}
for outs in results:
batch_res = get_infer_results(outs, clsid2catid)
start = 0
for i, im_id in enumerate(outs['im_id']):
bbox_num = outs['bbox_num']
end = start + bbox_num[i]
bbox_res = batch_res['bbox'][start:end] \
if 'bbox' in batch_res else None
if bbox_res:
proposals += bbox_res
logger.info("save proposals in {}".format(self.cfg.proposals_path))
with open(self.cfg.proposals_path, 'w') as f:
json.dump(proposals, f)
class SemiLogPrinter(LogPrinter):
def __init__(self, model):
super(SemiLogPrinter, self).__init__(model)
def on_step_end(self, status):
if dist.get_world_size() < 2 or dist.get_rank() == 0:
mode = status['mode']
if mode == 'train':
epoch_id = status['epoch_id']
step_id = status['step_id']
iter_id = status['iter_id']
steps_per_epoch = status['steps_per_epoch']
training_staus = status['training_staus']
batch_time = status['batch_time']
data_time = status['data_time']
epoches = self.model.cfg.epoch
batch_size = self.model.cfg['{}Reader'.format(mode.capitalize(
))]['batch_size']
iters = epoches * steps_per_epoch
logs = training_staus.log()
iter_space_fmt = ':' + str(len(str(iters))) + 'd'
space_fmt = ':' + str(len(str(iters))) + 'd'
if step_id % self.model.cfg.log_iter == 0:
eta_steps = (epoches - epoch_id) * steps_per_epoch - step_id
eta_sec = eta_steps * batch_time.global_avg
eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
ips = float(batch_size) / batch_time.avg
fmt = ' '.join([
'{' + iter_space_fmt + '}/{} iters',
'Epoch: [{}]',
'[{' + space_fmt + '}/{}]',
'learning_rate: {lr:.6f}',
'{meters}',
'eta: {eta}',
'batch_cost: {btime}',
'data_cost: {dtime}',
'ips: {ips:.4f} images/s',
])
fmt = fmt.format(
iter_id,
iters,
epoch_id,
step_id,
steps_per_epoch,
lr=status['learning_rate'],
meters=logs,
eta=eta_str,
btime=str(batch_time),
dtime=str(data_time),
ips=ips)
logger.info(fmt)
if mode == 'eval':
step_id = status['step_id']
if step_id % 100 == 0:
logger.info("Eval iter: {}".format(step_id))
class SemiCheckpointer(Checkpointer):
def __init__(self, model):
super(SemiCheckpointer, self).__init__(model)
cfg = self.model.cfg
self.best_ap = 0.
self.save_dir = os.path.join(self.model.cfg.save_dir,
self.model.cfg.filename)
if hasattr(self.model.model, 'student') and hasattr(self.model.model,
'teacher'):
self.weight = (self.model.model.teacher, self.model.model.student)
elif hasattr(self.model.model, 'student') or hasattr(self.model.model,
'teacher'):
raise AttributeError(
"model has no attribute 'student' or 'teacher'")
else:
raise AttributeError(
"model has no attribute 'student' and 'teacher'")
def every_n_iters(self, iter_id, n):
return (iter_id + 1) % n == 0 if n > 0 else False
def on_step_end(self, status):
# Checkpointer only performed during training
mode = status['mode']
eval_interval = status['eval_interval']
save_interval = status['save_interval']
iter_id = status['iter_id']
epoch_id = status['epoch_id']
t_weight = None
s_weight = None
save_name = None
if dist.get_world_size() < 2 or dist.get_rank() == 0:
if self.every_n_iters(iter_id, save_interval) and mode == 'train':
save_name = "last_epoch"
# save_name = str(iter_id + 1)
t_weight = self.weight[0].state_dict()
s_weight = self.weight[1].state_dict()
save_semi_model(t_weight, s_weight, self.model.optimizer,
self.save_dir, save_name, epoch_id + 1,
iter_id + 1)
def on_epoch_end(self, status):
# Checkpointer only performed during training
mode = status['mode']
eval_interval = status['eval_interval']
save_interval = status['save_interval']
iter_id = status['iter_id']
epoch_id = status['epoch_id']
t_weight = None
s_weight = None
save_name = None
if dist.get_world_size() < 2 or dist.get_rank() == 0:
if self.every_n_iters(iter_id, eval_interval) and mode == 'eval':
if 'save_best_model' in status and status['save_best_model']:
for metric in self.model._metrics:
map_res = metric.get_results()
if 'bbox' in map_res:
key = 'bbox'
elif 'keypoint' in map_res:
key = 'keypoint'
else:
key = 'mask'
if key not in map_res:
logger.warning("Evaluation results empty, this may be due to " \
"training iterations being too few or not " \
"loading the correct weights.")
return
if map_res[key][0] > self.best_ap:
self.best_ap = map_res[key][0]
save_name = 'best_model'
t_weight = self.weight[0].state_dict()
s_weight = self.weight[1].state_dict()
logger.info("Best teacher test {} ap is {:0.3f}.".
format(key, self.best_ap))
if t_weight and s_weight:
save_semi_model(t_weight, s_weight,
self.model.optimizer, self.save_dir,
save_name, epoch_id + 1, iter_id + 1)

View File

@@ -0,0 +1,50 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import numpy as np
import paddle
from paddle.distributed import fleet
__all__ = ['init_parallel_env', 'set_random_seed', 'init_fleet_env']
def init_fleet_env(find_unused_parameters=False):
strategy = fleet.DistributedStrategy()
strategy.find_unused_parameters = find_unused_parameters
fleet.init(is_collective=True, strategy=strategy)
def init_parallel_env():
env = os.environ
dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
if dist:
trainer_id = int(env['PADDLE_TRAINER_ID'])
local_seed = (99 + trainer_id)
random.seed(local_seed)
np.random.seed(local_seed)
paddle.distributed.init_parallel_env()
def set_random_seed(seed):
paddle.seed(seed)
random.seed(seed)
np.random.seed(seed)

View File

@@ -0,0 +1,373 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import yaml
from collections import OrderedDict
import paddle
from ppdet.data.source.category import get_categories
from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.engine')
# Global dictionary
TRT_MIN_SUBGRAPH = {
'YOLO': 3,
'PPYOLOE': 3,
'SSD': 60,
'RCNN': 40,
'RetinaNet': 40,
'S2ANet': 80,
'EfficientDet': 40,
'Face': 3,
'TTFNet': 60,
'FCOS': 16,
'SOLOv2': 60,
'HigherHRNet': 3,
'HRNet': 3,
'DeepSORT': 3,
'ByteTrack': 10,
'CenterTrack': 5,
'JDE': 10,
'FairMOT': 5,
'GFL': 16,
'PicoDet': 3,
'CenterNet': 5,
'TOOD': 5,
'YOLOX': 8,
'YOLOF': 40,
'METRO_Body': 3,
'DETR': 3,
'CLRNet': 3
}
KEYPOINT_ARCH = ['HigherHRNet', 'TopDownHRNet']
MOT_ARCH = ['JDE', 'FairMOT', 'DeepSORT', 'ByteTrack', 'CenterTrack']
LANE_ARCH = ['CLRNet']
TO_STATIC_SPEC = {
'yolov3_darknet53_270e_coco': [{
'im_id': paddle.static.InputSpec(
name='im_id', shape=[-1, 1], dtype='float32'),
'is_crowd': paddle.static.InputSpec(
name='is_crowd', shape=[-1, 50], dtype='float32'),
'gt_bbox': paddle.static.InputSpec(
name='gt_bbox', shape=[-1, 50, 4], dtype='float32'),
'curr_iter': paddle.static.InputSpec(
name='curr_iter', shape=[-1], dtype='float32'),
'image': paddle.static.InputSpec(
name='image', shape=[-1, 3, -1, -1], dtype='float32'),
'im_shape': paddle.static.InputSpec(
name='im_shape', shape=[-1, 2], dtype='float32'),
'scale_factor': paddle.static.InputSpec(
name='scale_factor', shape=[-1, 2], dtype='float32'),
'target0': paddle.static.InputSpec(
name='target0', shape=[-1, 3, 86, -1, -1], dtype='float32'),
'target1': paddle.static.InputSpec(
name='target1', shape=[-1, 3, 86, -1, -1], dtype='float32'),
'target2': paddle.static.InputSpec(
name='target2', shape=[-1, 3, 86, -1, -1], dtype='float32'),
}],
'tinypose_128x96': [{
'center': paddle.static.InputSpec(
name='center', shape=[-1, 2], dtype='float32'),
'scale': paddle.static.InputSpec(
name='scale', shape=[-1, 2], dtype='float32'),
'im_id': paddle.static.InputSpec(
name='im_id', shape=[-1, 1], dtype='float32'),
'image': paddle.static.InputSpec(
name='image', shape=[-1, 3, 128, 96], dtype='float32'),
'score': paddle.static.InputSpec(
name='score', shape=[-1], dtype='float32'),
'rotate': paddle.static.InputSpec(
name='rotate', shape=[-1], dtype='float32'),
'target': paddle.static.InputSpec(
name='target', shape=[-1, 17, 32, 24], dtype='float32'),
'target_weight': paddle.static.InputSpec(
name='target_weight', shape=[-1, 17, 1], dtype='float32'),
}],
'fcos_r50_fpn_1x_coco': [{
'im_id': paddle.static.InputSpec(
name='im_id', shape=[-1, 1], dtype='float32'),
'curr_iter': paddle.static.InputSpec(
name='curr_iter', shape=[-1], dtype='float32'),
'image': paddle.static.InputSpec(
name='image', shape=[-1, 3, -1, -1], dtype='float32'),
'im_shape': paddle.static.InputSpec(
name='im_shape', shape=[-1, 2], dtype='float32'),
'scale_factor': paddle.static.InputSpec(
name='scale_factor', shape=[-1, 2], dtype='float32'),
'reg_target0': paddle.static.InputSpec(
name='reg_target0', shape=[-1, 160, 160, 4], dtype='float32'),
'labels0': paddle.static.InputSpec(
name='labels0', shape=[-1, 160, 160, 1], dtype='int32'),
'centerness0': paddle.static.InputSpec(
name='centerness0', shape=[-1, 160, 160, 1], dtype='float32'),
'reg_target1': paddle.static.InputSpec(
name='reg_target1', shape=[-1, 80, 80, 4], dtype='float32'),
'labels1': paddle.static.InputSpec(
name='labels1', shape=[-1, 80, 80, 1], dtype='int32'),
'centerness1': paddle.static.InputSpec(
name='centerness1', shape=[-1, 80, 80, 1], dtype='float32'),
'reg_target2': paddle.static.InputSpec(
name='reg_target2', shape=[-1, 40, 40, 4], dtype='float32'),
'labels2': paddle.static.InputSpec(
name='labels2', shape=[-1, 40, 40, 1], dtype='int32'),
'centerness2': paddle.static.InputSpec(
name='centerness2', shape=[-1, 40, 40, 1], dtype='float32'),
'reg_target3': paddle.static.InputSpec(
name='reg_target3', shape=[-1, 20, 20, 4], dtype='float32'),
'labels3': paddle.static.InputSpec(
name='labels3', shape=[-1, 20, 20, 1], dtype='int32'),
'centerness3': paddle.static.InputSpec(
name='centerness3', shape=[-1, 20, 20, 1], dtype='float32'),
'reg_target4': paddle.static.InputSpec(
name='reg_target4', shape=[-1, 10, 10, 4], dtype='float32'),
'labels4': paddle.static.InputSpec(
name='labels4', shape=[-1, 10, 10, 1], dtype='int32'),
'centerness4': paddle.static.InputSpec(
name='centerness4', shape=[-1, 10, 10, 1], dtype='float32'),
}],
'picodet_s_320_coco_lcnet': [{
'im_id': paddle.static.InputSpec(
name='im_id', shape=[-1, 1], dtype='float32'),
'is_crowd': paddle.static.InputSpec(
name='is_crowd', shape=[-1, -1, 1], dtype='float32'),
'gt_class': paddle.static.InputSpec(
name='gt_class', shape=[-1, -1, 1], dtype='int32'),
'gt_bbox': paddle.static.InputSpec(
name='gt_bbox', shape=[-1, -1, 4], dtype='float32'),
'curr_iter': paddle.static.InputSpec(
name='curr_iter', shape=[-1], dtype='float32'),
'image': paddle.static.InputSpec(
name='image', shape=[-1, 3, -1, -1], dtype='float32'),
'im_shape': paddle.static.InputSpec(
name='im_shape', shape=[-1, 2], dtype='float32'),
'scale_factor': paddle.static.InputSpec(
name='scale_factor', shape=[-1, 2], dtype='float32'),
'pad_gt_mask': paddle.static.InputSpec(
name='pad_gt_mask', shape=[-1, -1, 1], dtype='float32'),
}],
'ppyoloe_crn_s_300e_coco': [{
'im_id': paddle.static.InputSpec(
name='im_id', shape=[-1, 1], dtype='float32'),
'is_crowd': paddle.static.InputSpec(
name='is_crowd', shape=[-1, -1, 1], dtype='float32'),
'gt_class': paddle.static.InputSpec(
name='gt_class', shape=[-1, -1, 1], dtype='int32'),
'gt_bbox': paddle.static.InputSpec(
name='gt_bbox', shape=[-1, -1, 4], dtype='float32'),
'curr_iter': paddle.static.InputSpec(
name='curr_iter', shape=[-1], dtype='float32'),
'image': paddle.static.InputSpec(
name='image', shape=[-1, 3, -1, -1], dtype='float32'),
'im_shape': paddle.static.InputSpec(
name='im_shape', shape=[-1, 2], dtype='float32'),
'scale_factor': paddle.static.InputSpec(
name='scale_factor', shape=[-1, 2], dtype='float32'),
'pad_gt_mask': paddle.static.InputSpec(
name='pad_gt_mask', shape=[-1, -1, 1], dtype='float32'),
}],
}
def apply_to_static(config, model):
filename = config.get('filename', None)
spec = TO_STATIC_SPEC.get(filename, None)
model = paddle.jit.to_static(model, input_spec=spec)
logger.info("Successfully to apply @to_static with specs: {}".format(spec))
return model
def _prune_input_spec(input_spec, program, targets):
# try to prune static program to figure out pruned input spec
# so we perform following operations in static mode
device = paddle.get_device()
paddle.enable_static()
paddle.set_device(device)
pruned_input_spec = [{}]
program = program.clone()
program = program._prune(targets=targets)
global_block = program.global_block()
for name, spec in input_spec[0].items():
try:
v = global_block.var(name)
pruned_input_spec[0][name] = spec
except Exception:
pass
paddle.disable_static(place=device)
return pruned_input_spec
def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
preprocess_list = []
label_list = []
if arch != "lane_arch":
anno_file = dataset_cfg.get_anno()
clsid2catid, catid2name = get_categories(metric, anno_file, arch)
label_list = [str(cat) for cat in catid2name.values()]
fuse_normalize = reader_cfg.get('fuse_normalize', False)
sample_transforms = reader_cfg['sample_transforms']
for st in sample_transforms[1:]:
for key, value in st.items():
p = {'type': key}
if key == 'Resize':
if int(image_shape[1]) != -1:
value['target_size'] = image_shape[1:]
value['interp'] = value.get('interp', 1) # cv2.INTER_LINEAR
if fuse_normalize and key == 'NormalizeImage':
continue
p.update(value)
preprocess_list.append(p)
batch_transforms = reader_cfg.get('batch_transforms', None)
if batch_transforms:
for bt in batch_transforms:
for key, value in bt.items():
# for deploy/infer, use PadStride(stride) instead PadBatch(pad_to_stride)
if key == 'PadBatch':
preprocess_list.append({
'type': 'PadStride',
'stride': value['pad_to_stride']
})
break
elif key == "CULaneResize":
# cut and resize
p = {'type': key}
p.update(value)
p.update({"cut_height": dataset_cfg.cut_height})
preprocess_list.append(p)
break
return preprocess_list, label_list
def _parse_tracker(tracker_cfg):
tracker_params = {}
for k, v in tracker_cfg.items():
tracker_params.update({k: v})
return tracker_params
def _dump_infer_config(config, path, image_shape, model):
arch_state = False
from ppdet.core.config.yaml_helpers import setup_orderdict
setup_orderdict()
use_dynamic_shape = True if image_shape[2] == -1 else False
infer_cfg = OrderedDict({
'mode': 'paddle',
'draw_threshold': 0.5,
'metric': config['metric'],
'use_dynamic_shape': use_dynamic_shape
})
export_onnx = config.get('export_onnx', False)
export_eb = config.get('export_eb', False)
infer_arch = config['architecture']
if 'RCNN' in infer_arch and export_onnx:
logger.warning(
"Exporting RCNN model to ONNX only support batch_size = 1")
infer_cfg['export_onnx'] = True
infer_cfg['export_eb'] = export_eb
if infer_arch in MOT_ARCH:
if infer_arch == 'DeepSORT':
tracker_cfg = config['DeepSORTTracker']
elif infer_arch == 'CenterTrack':
tracker_cfg = config['CenterTracker']
else:
tracker_cfg = config['JDETracker']
infer_cfg['tracker'] = _parse_tracker(tracker_cfg)
for arch, min_subgraph_size in TRT_MIN_SUBGRAPH.items():
if arch in infer_arch:
infer_cfg['arch'] = arch
infer_cfg['min_subgraph_size'] = min_subgraph_size
arch_state = True
break
if infer_arch == 'PPYOLOEWithAuxHead':
infer_arch = 'PPYOLOE'
if infer_arch in ['PPYOLOE', 'YOLOX', 'YOLOF']:
infer_cfg['arch'] = infer_arch
infer_cfg['min_subgraph_size'] = TRT_MIN_SUBGRAPH[infer_arch]
arch_state = True
if not arch_state:
logger.error(
'Architecture: {} is not supported for exporting model now.\n'.
format(infer_arch) +
'Please set TRT_MIN_SUBGRAPH in ppdet/engine/export_utils.py')
os._exit(0)
if 'mask_head' in config[config['architecture']] and config[config[
'architecture']]['mask_head']:
infer_cfg['mask'] = True
label_arch = 'detection_arch'
if infer_arch in KEYPOINT_ARCH:
label_arch = 'keypoint_arch'
if infer_arch in LANE_ARCH:
infer_cfg['arch'] = infer_arch
infer_cfg['min_subgraph_size'] = TRT_MIN_SUBGRAPH[infer_arch]
infer_cfg['img_w'] = config['img_w']
infer_cfg['ori_img_h'] = config['ori_img_h']
infer_cfg['cut_height'] = config['cut_height']
label_arch = 'lane_arch'
head_name = "CLRHead"
infer_cfg['conf_threshold'] = config[head_name]['conf_threshold']
infer_cfg['nms_thres'] = config[head_name]['nms_thres']
infer_cfg['max_lanes'] = config[head_name]['max_lanes']
infer_cfg['num_points'] = config[head_name]['num_points']
arch_state = True
if infer_arch in MOT_ARCH:
if config['metric'] in ['COCO', 'VOC']:
# MOT model run as Detector
reader_cfg = config['TestReader']
dataset_cfg = config['TestDataset']
else:
# 'metric' in ['MOT', 'MCMOT', 'KITTI']
label_arch = 'mot_arch'
reader_cfg = config['TestMOTReader']
dataset_cfg = config['TestMOTDataset']
else:
reader_cfg = config['TestReader']
dataset_cfg = config['TestDataset']
infer_cfg['Preprocess'], infer_cfg['label_list'] = _parse_reader(
reader_cfg, dataset_cfg, config['metric'], label_arch, image_shape[1:])
if infer_arch == 'PicoDet':
if hasattr(config, 'export') and config['export'].get(
'post_process',
False) and not config['export'].get('benchmark', False):
infer_cfg['arch'] = 'GFL'
head_name = 'PicoHeadV2' if config['PicoHeadV2'] else 'PicoHead'
infer_cfg['NMS'] = config[head_name]['nms']
# In order to speed up the prediction, the threshold of nms
# is adjusted here, which can be changed in infer_cfg.yml
config[head_name]['nms']["score_threshold"] = 0.3
config[head_name]['nms']["nms_threshold"] = 0.5
infer_cfg['fpn_stride'] = config[head_name]['fpn_stride']
yaml.dump(infer_cfg, open(path, 'w'))
logger.info("Export inference config file to {}".format(os.path.join(path)))

View File

@@ -0,0 +1,731 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import glob
import re
import paddle
import paddle.nn as nn
import numpy as np
from tqdm import tqdm
from collections import defaultdict
from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
from ppdet.modeling.mot.utils import MOTTimer, load_det_results, write_mot_results, save_vis_results
from ppdet.modeling.mot.tracker import JDETracker, CenterTracker
from ppdet.modeling.mot.tracker import DeepSORTTracker, OCSORTTracker, BOTSORTTracker
from ppdet.modeling.architectures import YOLOX
from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric, MCMOTMetric
from ppdet.data.source.category import get_categories
import ppdet.utils.stats as stats
from .callbacks import Callback, ComposeCallback
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
MOT_ARCH = ['JDE', 'FairMOT', 'DeepSORT', 'ByteTrack', 'CenterTrack']
MOT_ARCH_JDE = MOT_ARCH[:2]
MOT_ARCH_SDE = MOT_ARCH[2:4]
MOT_DATA_TYPE = ['mot', 'mcmot', 'kitti']
__all__ = ['Tracker']
class Tracker(object):
def __init__(self, cfg, mode='eval'):
self.cfg = cfg
assert mode.lower() in ['test', 'eval'], \
"mode should be 'test' or 'eval'"
self.mode = mode.lower()
self.optimizer = None
# build MOT data loader
self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
# build model
self.model = create(cfg.architecture)
if isinstance(self.model.detector, YOLOX):
for k, m in self.model.named_sublayers():
if isinstance(m, nn.BatchNorm2D):
m._epsilon = 1e-3 # for amp(fp16)
m._momentum = 0.97 # 0.03 in pytorch
anno_file = self.dataset.get_anno()
clsid2catid, catid2name = get_categories(
self.cfg.metric, anno_file=anno_file)
self.ids2names = []
for k, v in catid2name.items():
self.ids2names.append(v)
self.status = {}
self.start_epoch = 0
# initial default callbacks
self._init_callbacks()
# initial default metrics
self._init_metrics()
self._reset_metrics()
def _init_callbacks(self):
self._callbacks = []
self._compose_callback = None
def _init_metrics(self):
if self.mode in ['test']:
self._metrics = []
return
if self.cfg.metric == 'MOT':
self._metrics = [MOTMetric(), ]
elif self.cfg.metric == 'MCMOT':
self._metrics = [MCMOTMetric(self.cfg.num_classes), ]
elif self.cfg.metric == 'KITTI':
self._metrics = [KITTIMOTMetric(), ]
else:
logger.warning("Metric not support for metric type {}".format(
self.cfg.metric))
self._metrics = []
def _reset_metrics(self):
for metric in self._metrics:
metric.reset()
def register_callbacks(self, callbacks):
callbacks = [h for h in list(callbacks) if h is not None]
for c in callbacks:
assert isinstance(c, Callback), \
"metrics shoule be instances of subclass of Metric"
self._callbacks.extend(callbacks)
self._compose_callback = ComposeCallback(self._callbacks)
def register_metrics(self, metrics):
metrics = [m for m in list(metrics) if m is not None]
for m in metrics:
assert isinstance(m, Metric), \
"metrics shoule be instances of subclass of Metric"
self._metrics.extend(metrics)
def load_weights_jde(self, weights):
load_weight(self.model, weights, self.optimizer)
def load_weights_sde(self, det_weights, reid_weights):
with_detector = self.model.detector is not None
with_reid = self.model.reid is not None
if with_detector:
load_weight(self.model.detector, det_weights)
if with_reid:
load_weight(self.model.reid, reid_weights)
else:
load_weight(self.model.reid, reid_weights)
def _eval_seq_centertrack(self,
dataloader,
save_dir=None,
show_image=False,
frame_rate=30,
draw_threshold=0):
assert isinstance(self.model.tracker, CenterTracker)
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
tracker = self.model.tracker
timer = MOTTimer()
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
results = defaultdict(list) # only support single class now
for step_id, data in enumerate(tqdm(dataloader)):
self.status['step_id'] = step_id
if step_id == 0:
self.model.reset_tracking()
# forward
timer.tic()
pred_ret = self.model(data)
online_targets = tracker.update(pred_ret)
online_tlwhs, online_scores, online_ids = [], [], []
for t in online_targets:
bbox = t['bbox']
tlwh = [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]]
tscore = float(t['score'])
tid = int(t['tracking_id'])
if tlwh[2] * tlwh[3] > 0:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(tscore)
timer.toc()
# save results
results[0].append(
(frame_id + 1, online_tlwhs, online_scores, online_ids))
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
frame_id += 1
return results, frame_id, timer.average_time, timer.calls
def _eval_seq_jde(self,
dataloader,
save_dir=None,
show_image=False,
frame_rate=30,
draw_threshold=0):
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
tracker = self.model.tracker
tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)
timer = MOTTimer()
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
results = defaultdict(list) # support single class and multi classes
for step_id, data in enumerate(tqdm(dataloader)):
self.status['step_id'] = step_id
# forward
timer.tic()
pred_dets, pred_embs = self.model(data)
pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy()
online_targets_dict = self.model.tracker.update(pred_dets,
pred_embs)
online_tlwhs = defaultdict(list)
online_scores = defaultdict(list)
online_ids = defaultdict(list)
for cls_id in range(self.cfg.num_classes):
online_targets = online_targets_dict[cls_id]
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > tracker.vertical_ratio:
continue
online_tlwhs[cls_id].append(tlwh)
online_ids[cls_id].append(tid)
online_scores[cls_id].append(tscore)
# save results
results[cls_id].append(
(frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
online_ids[cls_id]))
timer.toc()
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
frame_id += 1
return results, frame_id, timer.average_time, timer.calls
def _eval_seq_sde(self,
dataloader,
save_dir=None,
show_image=False,
frame_rate=30,
seq_name='',
scaled=False,
det_file='',
draw_threshold=0):
if save_dir:
if not os.path.exists(save_dir): os.makedirs(save_dir)
use_detector = False if not self.model.detector else True
use_reid = hasattr(self.model, 'reid')
if use_reid and self.model.reid is not None:
use_reid = True
else:
use_reid = False
timer = MOTTimer()
results = defaultdict(list)
frame_id = 0
self.status['mode'] = 'track'
self.model.eval()
if use_reid:
self.model.reid.eval()
if not use_detector:
dets_list = load_det_results(det_file, len(dataloader))
logger.info('Finish loading detection results file {}.'.format(
det_file))
tracker = self.model.tracker
for step_id, data in enumerate(tqdm(dataloader)):
self.status['step_id'] = step_id
ori_image = data['ori_image'] # [bs, H, W, 3]
ori_image_shape = data['ori_image'].shape[1:3]
# ori_image_shape: [H, W]
input_shape = data['image'].shape[2:]
# input_shape: [h, w], before data transforms, set in model config
im_shape = data['im_shape'][0].numpy()
# im_shape: [new_h, new_w], after data transforms
scale_factor = data['scale_factor'][0].numpy()
empty_detections = False
# when it has no detected bboxes, will not inference reid model
# and if visualize, use original image instead
# forward
timer.tic()
if not use_detector:
dets = dets_list[frame_id]
bbox_tlwh = np.array(dets['bbox'], dtype='float32')
if bbox_tlwh.shape[0] > 0:
# detector outputs: pred_cls_ids, pred_scores, pred_bboxes
pred_cls_ids = np.array(dets['cls_id'], dtype='float32')
pred_scores = np.array(dets['score'], dtype='float32')
pred_bboxes = np.concatenate(
(bbox_tlwh[:, 0:2],
bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
axis=1)
else:
logger.warning(
'Frame {} has not object, try to modify score threshold.'.
format(frame_id))
empty_detections = True
else:
outs = self.model.detector(data)
outs['bbox'] = outs['bbox'].numpy()
outs['bbox_num'] = outs['bbox_num'].numpy()
if len(outs['bbox']) > 0 and empty_detections == False:
# detector outputs: pred_cls_ids, pred_scores, pred_bboxes
pred_cls_ids = outs['bbox'][:, 0:1]
pred_scores = outs['bbox'][:, 1:2]
if not scaled:
# Note: scaled=False only in JDE YOLOv3 or other detectors
# with LetterBoxResize and JDEBBoxPostProcess.
#
# 'scaled' means whether the coords after detector outputs
# have been scaled back to the original image, set True
# in general detector, set False in JDE YOLOv3.
pred_bboxes = scale_coords(outs['bbox'][:, 2:],
input_shape, im_shape,
scale_factor)
else:
pred_bboxes = outs['bbox'][:, 2:]
pred_dets_old = np.concatenate(
(pred_cls_ids, pred_scores, pred_bboxes), axis=1)
else:
logger.warning(
'Frame {} has not detected object, try to modify score threshold.'.
format(frame_id))
empty_detections = True
if not empty_detections:
pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)
if len(keep_idx[0]) == 0:
logger.warning(
'Frame {} has not detected object left after clip_box.'.
format(frame_id))
empty_detections = True
if empty_detections:
timer.toc()
# if visualize, use original image instead
online_ids, online_tlwhs, online_scores = None, None, None
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
frame_id += 1
# thus will not inference reid model
continue
pred_cls_ids = pred_cls_ids[keep_idx[0]]
pred_scores = pred_scores[keep_idx[0]]
pred_dets = np.concatenate(
(pred_cls_ids, pred_scores, pred_xyxys), axis=1)
if use_reid:
crops = get_crops(
pred_xyxys,
ori_image,
w=tracker.input_size[0],
h=tracker.input_size[1])
crops = paddle.to_tensor(crops)
data.update({'crops': crops})
pred_embs = self.model(data)['embeddings'].numpy()
else:
pred_embs = None
if isinstance(tracker, DeepSORTTracker):
online_tlwhs, online_scores, online_ids = [], [], []
tracker.predict()
online_targets = tracker.update(pred_dets, pred_embs)
for t in online_targets:
if not t.is_confirmed() or t.time_since_update > 1:
continue
tlwh = t.to_tlwh()
tscore = t.score
tid = t.track_id
if tscore < draw_threshold: continue
if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > tracker.vertical_ratio:
continue
online_tlwhs.append(tlwh)
online_scores.append(tscore)
online_ids.append(tid)
timer.toc()
# save results
results[0].append(
(frame_id + 1, online_tlwhs, online_scores, online_ids))
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
elif isinstance(tracker, JDETracker):
# trick hyperparams only used for MOTChallenge (MOT17, MOT20) Test-set
tracker.track_buffer, tracker.conf_thres = get_trick_hyperparams(
seq_name, tracker.track_buffer, tracker.conf_thres)
online_targets_dict = tracker.update(pred_dets_old, pred_embs)
online_tlwhs = defaultdict(list)
online_scores = defaultdict(list)
online_ids = defaultdict(list)
for cls_id in range(self.cfg.num_classes):
online_targets = online_targets_dict[cls_id]
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > tracker.vertical_ratio:
continue
online_tlwhs[cls_id].append(tlwh)
online_ids[cls_id].append(tid)
online_scores[cls_id].append(tscore)
# save results
results[cls_id].append(
(frame_id + 1, online_tlwhs[cls_id],
online_scores[cls_id], online_ids[cls_id]))
timer.toc()
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
elif isinstance(tracker, OCSORTTracker):
# OC_SORT Tracker
online_targets = tracker.update(pred_dets_old, pred_embs)
online_tlwhs = []
online_ids = []
online_scores = []
for t in online_targets:
tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]]
tscore = float(t[4])
tid = int(t[5])
if tlwh[2] * tlwh[3] > 0:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(tscore)
timer.toc()
# save results
results[0].append(
(frame_id + 1, online_tlwhs, online_scores, online_ids))
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
elif isinstance(tracker, BOTSORTTracker):
# BOTSORT Tracker
online_targets = tracker.update(
pred_dets_old, img=ori_image.numpy())
online_tlwhs = []
online_ids = []
online_scores = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tlwh[2] * tlwh[3] > 0:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(tscore)
timer.toc()
# save results
results[0].append(
(frame_id + 1, online_tlwhs, online_scores, online_ids))
save_vis_results(data, frame_id, online_ids, online_tlwhs,
online_scores, timer.average_time, show_image,
save_dir, self.cfg.num_classes, self.ids2names)
else:
raise ValueError(tracker)
frame_id += 1
return results, frame_id, timer.average_time, timer.calls
def mot_evaluate(self,
data_root,
seqs,
output_dir,
data_type='mot',
model_type='JDE',
save_images=False,
save_videos=False,
show_image=False,
scaled=False,
det_results_dir=''):
if not os.path.exists(output_dir): os.makedirs(output_dir)
result_root = os.path.join(output_dir, 'mot_results')
if not os.path.exists(result_root): os.makedirs(result_root)
assert data_type in MOT_DATA_TYPE, \
"data_type should be 'mot', 'mcmot' or 'kitti'"
assert model_type in MOT_ARCH, \
"model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'"
# run tracking
n_frame = 0
timer_avgs, timer_calls = [], []
for seq in seqs:
infer_dir = os.path.join(data_root, seq)
if not os.path.exists(infer_dir) or not os.path.isdir(infer_dir):
logger.warning("Seq {} error, {} has no images.".format(
seq, infer_dir))
continue
if os.path.exists(os.path.join(infer_dir, 'img1')):
infer_dir = os.path.join(infer_dir, 'img1')
frame_rate = 30
seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
if os.path.exists(seqinfo):
meta_info = open(seqinfo).read()
frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
meta_info.find('\nseqLength')])
save_dir = os.path.join(output_dir, 'mot_outputs',
seq) if save_images or save_videos else None
logger.info('Evaluate seq: {}'.format(seq))
self.dataset.set_images(self.get_infer_images(infer_dir))
dataloader = create('EvalMOTReader')(self.dataset, 0)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
with paddle.no_grad():
if model_type in MOT_ARCH_JDE:
results, nf, ta, tc = self._eval_seq_jde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate)
elif model_type in MOT_ARCH_SDE:
results, nf, ta, tc = self._eval_seq_sde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate,
seq_name=seq,
scaled=scaled,
det_file=os.path.join(det_results_dir,
'{}.txt'.format(seq)))
elif model_type == 'CenterTrack':
results, nf, ta, tc = self._eval_seq_centertrack(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate)
else:
raise ValueError(model_type)
write_mot_results(result_filename, results, data_type,
self.cfg.num_classes)
n_frame += nf
timer_avgs.append(ta)
timer_calls.append(tc)
if save_videos:
output_video_path = os.path.join(save_dir, '..',
'{}_vis.mp4'.format(seq))
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
save_dir, output_video_path)
os.system(cmd_str)
logger.info('Save video in {}.'.format(output_video_path))
# update metrics
for metric in self._metrics:
metric.update(data_root, seq, data_type, result_root,
result_filename)
timer_avgs = np.asarray(timer_avgs)
timer_calls = np.asarray(timer_calls)
all_time = np.dot(timer_avgs, timer_calls)
avg_time = all_time / np.sum(timer_calls)
logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
all_time, 1.0 / avg_time))
# accumulate metric to log out
for metric in self._metrics:
metric.accumulate()
metric.log()
# reset metric states for metric may performed multiple times
self._reset_metrics()
def get_infer_images(self, infer_dir):
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
images = set()
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
images.sort()
assert len(images) > 0, "no image found in {}".format(infer_dir)
logger.info("Found {} inference images in total.".format(len(images)))
return images
def mot_predict_seq(self,
video_file,
frame_rate,
image_dir,
output_dir,
data_type='mot',
model_type='JDE',
save_images=False,
save_videos=True,
show_image=False,
scaled=False,
det_results_dir='',
draw_threshold=0.5):
assert video_file is not None or image_dir is not None, \
"--video_file or --image_dir should be set."
assert video_file is None or os.path.isfile(video_file), \
"{} is not a file".format(video_file)
assert image_dir is None or os.path.isdir(image_dir), \
"{} is not a directory".format(image_dir)
if not os.path.exists(output_dir): os.makedirs(output_dir)
result_root = os.path.join(output_dir, 'mot_results')
if not os.path.exists(result_root): os.makedirs(result_root)
assert data_type in MOT_DATA_TYPE, \
"data_type should be 'mot', 'mcmot' or 'kitti'"
assert model_type in MOT_ARCH, \
"model_type should be 'JDE', 'DeepSORT', 'FairMOT' or 'ByteTrack'"
# run tracking
if video_file:
seq = video_file.split('/')[-1].split('.')[0]
self.dataset.set_video(video_file, frame_rate)
logger.info('Starting tracking video {}'.format(video_file))
elif image_dir:
seq = image_dir.split('/')[-1].split('.')[0]
if os.path.exists(os.path.join(image_dir, 'img1')):
image_dir = os.path.join(image_dir, 'img1')
images = [
'{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
]
images.sort()
self.dataset.set_images(images)
logger.info('Starting tracking folder {}, found {} images'.format(
image_dir, len(images)))
else:
raise ValueError('--video_file or --image_dir should be set.')
save_dir = os.path.join(output_dir, 'mot_outputs',
seq) if save_images or save_videos else None
dataloader = create('TestMOTReader')(self.dataset, 0)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
if frame_rate == -1:
frame_rate = self.dataset.frame_rate
with paddle.no_grad():
if model_type in MOT_ARCH_JDE:
results, nf, ta, tc = self._eval_seq_jde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate,
draw_threshold=draw_threshold)
elif model_type in MOT_ARCH_SDE:
results, nf, ta, tc = self._eval_seq_sde(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate,
seq_name=seq,
scaled=scaled,
det_file=os.path.join(det_results_dir,
'{}.txt'.format(seq)),
draw_threshold=draw_threshold)
elif model_type == 'CenterTrack':
results, nf, ta, tc = self._eval_seq_centertrack(
dataloader,
save_dir=save_dir,
show_image=show_image,
frame_rate=frame_rate)
else:
raise ValueError(model_type)
if save_videos:
output_video_path = os.path.join(save_dir, '..',
'{}_vis.mp4'.format(seq))
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
save_dir, output_video_path)
os.system(cmd_str)
logger.info('Save video in {}'.format(output_video_path))
write_mot_results(result_filename, results, data_type,
self.cfg.num_classes)
def get_trick_hyperparams(video_name, ori_buffer, ori_thresh):
if video_name[:3] != 'MOT':
# only used for MOTChallenge (MOT17, MOT20) Test-set
return ori_buffer, ori_thresh
video_name = video_name[:8]
if 'MOT17-05' in video_name:
track_buffer = 14
elif 'MOT17-13' in video_name:
track_buffer = 25
else:
track_buffer = ori_buffer
if 'MOT17-01' in video_name:
track_thresh = 0.65
elif 'MOT17-06' in video_name:
track_thresh = 0.65
elif 'MOT17-12' in video_name:
track_thresh = 0.7
elif 'MOT17-14' in video_name:
track_thresh = 0.67
else:
track_thresh = ori_thresh
if 'MOT20-06' in video_name or 'MOT20-08' in video_name:
track_thresh = 0.3
else:
track_thresh = ori_thresh
return track_buffer, ori_thresh

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,42 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ppdet.core.workspace import create
from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.engine')
from . import Trainer
__all__ = ['TrainerCot']
class TrainerCot(Trainer):
"""
Trainer for label-cotuning
calculate the relationship between base_classes and novel_classes
"""
def __init__(self, cfg, mode='train'):
super(TrainerCot, self).__init__(cfg, mode)
self.cotuning_init()
def cotuning_init(self):
num_classes_novel = self.cfg['num_classes']
self.load_weights(self.cfg.pretrain_weights)
self.model.eval()
relationship = self.model.relationship_learning(self.loader, num_classes_novel)
self.model.init_cot_head(relationship)
self.optimizer = create('OptimizerBuilder')(self.lr, self.model)

File diff suppressed because it is too large Load Diff