更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,34 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import metrics
from . import keypoint_metrics
from .metrics import *
from .keypoint_metrics import *
from .pose3d_metrics import *
__all__ = metrics.__all__ + keypoint_metrics.__all__
from . import mot_metrics
from .mot_metrics import *
__all__ = metrics.__all__ + mot_metrics.__all__
from . import mcmot_metrics
from .mcmot_metrics import *
__all__ = metrics.__all__ + mcmot_metrics.__all__
from . import culane_metrics
from .culane_metrics import *
__all__ = metrics.__all__ + culane_metrics.__all__

View File

@@ -0,0 +1,188 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
import itertools
from ppdet.metrics.json_results import get_det_res, get_det_poly_res, get_seg_res, get_solov2_segm_res, get_keypoint_res, get_pose3d_res
from ppdet.metrics.map_utils import draw_pr_curve
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
def get_infer_results(outs, catid, bias=0):
"""
Get result at the stage of inference.
The output format is dictionary containing bbox or mask result.
For example, bbox result is a list and each element contains
image_id, category_id, bbox and score.
"""
if outs is None or len(outs) == 0:
raise ValueError(
'The number of valid detection result if zero. Please use reasonable model and check input data.'
)
im_id = outs['im_id']
infer_res = {}
if 'bbox' in outs:
if len(outs['bbox']) > 0 and len(outs['bbox'][0]) > 6:
infer_res['bbox'] = get_det_poly_res(
outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)
else:
infer_res['bbox'] = get_det_res(
outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias)
if 'mask' in outs:
# mask post process
infer_res['mask'] = get_seg_res(outs['mask'], outs['bbox'],
outs['bbox_num'], im_id, catid)
if 'segm' in outs:
infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid)
if 'keypoint' in outs:
infer_res['keypoint'] = get_keypoint_res(outs, im_id)
outs['bbox_num'] = [len(infer_res['keypoint'])]
if 'pose3d' in outs:
infer_res['pose3d'] = get_pose3d_res(outs, im_id)
outs['bbox_num'] = [len(infer_res['pose3d'])]
return infer_res
def cocoapi_eval(jsonfile,
style,
coco_gt=None,
anno_file=None,
max_dets=(100, 300, 1000),
classwise=False,
sigmas=None,
use_area=True):
"""
Args:
jsonfile (str): Evaluation json file, eg: bbox.json, mask.json.
style (str): COCOeval style, can be `bbox` , `segm` , `proposal`, `keypoints` and `keypoints_crowd`.
coco_gt (str): Whether to load COCOAPI through anno_file,
eg: coco_gt = COCO(anno_file)
anno_file (str): COCO annotations file.
max_dets (tuple): COCO evaluation maxDets.
classwise (bool): Whether per-category AP and draw P-R Curve or not.
sigmas (nparray): keypoint labelling sigmas.
use_area (bool): If gt annotations (eg. CrowdPose, AIC)
do not have 'area', please set use_area=False.
"""
assert coco_gt != None or anno_file != None
if style == 'keypoints_crowd':
#please install xtcocotools==1.6
from xtcocotools.coco import COCO
from xtcocotools.cocoeval import COCOeval
else:
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
if coco_gt == None:
coco_gt = COCO(anno_file)
logger.info("Start evaluate...")
coco_dt = coco_gt.loadRes(jsonfile)
if style == 'proposal':
coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
coco_eval.params.useCats = 0
coco_eval.params.maxDets = list(max_dets)
elif style == 'keypoints_crowd':
coco_eval = COCOeval(coco_gt, coco_dt, style, sigmas, use_area)
else:
coco_eval = COCOeval(coco_gt, coco_dt, style)
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if classwise:
# Compute per-category AP and PR curve
try:
from terminaltables import AsciiTable
except Exception as e:
logger.error(
'terminaltables not found, plaese install terminaltables. '
'for example: `pip install terminaltables`.')
raise e
precisions = coco_eval.eval['precision']
cat_ids = coco_gt.getCatIds()
# precision: (iou, recall, cls, area range, max dets)
assert len(cat_ids) == precisions.shape[2]
results_per_category = []
for idx, catId in enumerate(cat_ids):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
nm = coco_gt.loadCats(catId)[0]
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
if precision.size:
ap = np.mean(precision)
else:
ap = float('nan')
results_per_category.append(
(str(nm["name"]), '{:0.3f}'.format(float(ap))))
pr_array = precisions[0, :, idx, 0, 2]
recall_array = np.arange(0.0, 1.01, 0.01)
draw_pr_curve(
pr_array,
recall_array,
out_dir=style + '_pr_curve',
file_name='{}_precision_recall_curve.jpg'.format(nm["name"]))
num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (num_columns // 2)
results_2d = itertools.zip_longest(
* [results_flatten[i::num_columns] for i in range(num_columns)])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
logger.info('Per-category of {} AP: \n{}'.format(style, table.table))
logger.info("per-category PR curve has output to {} folder.".format(
style + '_pr_curve'))
# flush coco evaluation result
sys.stdout.flush()
return coco_eval.stats
def json_eval_results(metric, json_directory, dataset):
"""
cocoapi eval with already exists proposal.json, bbox.json or mask.json
"""
assert metric == 'COCO'
anno_file = dataset.get_anno()
json_file_list = ['proposal.json', 'bbox.json', 'mask.json']
if json_directory:
assert os.path.exists(
json_directory), "The json directory:{} does not exist".format(
json_directory)
for k, v in enumerate(json_file_list):
json_file_list[k] = os.path.join(str(json_directory), v)
coco_eval_style = ['proposal', 'bbox', 'segm']
for i, v_json in enumerate(json_file_list):
if os.path.exists(v_json):
cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file)
else:
logger.info("{} not exists!".format(v_json))

View File

@@ -0,0 +1,327 @@
import os
import cv2
import numpy as np
import os.path as osp
from functools import partial
from .metrics import Metric
from scipy.interpolate import splprep, splev
from scipy.optimize import linear_sum_assignment
from shapely.geometry import LineString, Polygon
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'draw_lane', 'discrete_cross_iou', 'continuous_cross_iou', 'interp',
'culane_metric', 'load_culane_img_data', 'load_culane_data',
'eval_predictions', "CULaneMetric"
]
LIST_FILE = {
'train': 'list/train_gt.txt',
'val': 'list/val.txt',
'test': 'list/test.txt',
}
CATEGORYS = {
'normal': 'list/test_split/test0_normal.txt',
'crowd': 'list/test_split/test1_crowd.txt',
'hlight': 'list/test_split/test2_hlight.txt',
'shadow': 'list/test_split/test3_shadow.txt',
'noline': 'list/test_split/test4_noline.txt',
'arrow': 'list/test_split/test5_arrow.txt',
'curve': 'list/test_split/test6_curve.txt',
'cross': 'list/test_split/test7_cross.txt',
'night': 'list/test_split/test8_night.txt',
}
def draw_lane(lane, img=None, img_shape=None, width=30):
if img is None:
img = np.zeros(img_shape, dtype=np.uint8)
lane = lane.astype(np.int32)
for p1, p2 in zip(lane[:-1], lane[1:]):
cv2.line(
img, tuple(p1), tuple(p2), color=(255, 255, 255), thickness=width)
return img
def discrete_cross_iou(xs, ys, width=30, img_shape=(590, 1640, 3)):
xs = [draw_lane(lane, img_shape=img_shape, width=width) > 0 for lane in xs]
ys = [draw_lane(lane, img_shape=img_shape, width=width) > 0 for lane in ys]
ious = np.zeros((len(xs), len(ys)))
for i, x in enumerate(xs):
for j, y in enumerate(ys):
ious[i, j] = (x & y).sum() / (x | y).sum()
return ious
def continuous_cross_iou(xs, ys, width=30, img_shape=(590, 1640, 3)):
h, w, _ = img_shape
image = Polygon([(0, 0), (0, h - 1), (w - 1, h - 1), (w - 1, 0)])
xs = [
LineString(lane).buffer(
distance=width / 2., cap_style=1, join_style=2).intersection(image)
for lane in xs
]
ys = [
LineString(lane).buffer(
distance=width / 2., cap_style=1, join_style=2).intersection(image)
for lane in ys
]
ious = np.zeros((len(xs), len(ys)))
for i, x in enumerate(xs):
for j, y in enumerate(ys):
ious[i, j] = x.intersection(y).area / x.union(y).area
return ious
def interp(points, n=50):
x = [x for x, _ in points]
y = [y for _, y in points]
tck, u = splprep([x, y], s=0, t=n, k=min(3, len(points) - 1))
u = np.linspace(0., 1., num=(len(u) - 1) * n + 1)
return np.array(splev(u, tck)).T
def culane_metric(pred,
anno,
width=30,
iou_thresholds=[0.5],
official=True,
img_shape=(590, 1640, 3)):
_metric = {}
for thr in iou_thresholds:
tp = 0
fp = 0 if len(anno) != 0 else len(pred)
fn = 0 if len(pred) != 0 else len(anno)
_metric[thr] = [tp, fp, fn]
interp_pred = np.array(
[interp(
pred_lane, n=5) for pred_lane in pred], dtype=object) # (4, 50, 2)
interp_anno = np.array(
[interp(
anno_lane, n=5) for anno_lane in anno], dtype=object) # (4, 50, 2)
if official:
ious = discrete_cross_iou(
interp_pred, interp_anno, width=width, img_shape=img_shape)
else:
ious = continuous_cross_iou(
interp_pred, interp_anno, width=width, img_shape=img_shape)
row_ind, col_ind = linear_sum_assignment(1 - ious)
_metric = {}
for thr in iou_thresholds:
tp = int((ious[row_ind, col_ind] > thr).sum())
fp = len(pred) - tp
fn = len(anno) - tp
_metric[thr] = [tp, fp, fn]
return _metric
def load_culane_img_data(path):
with open(path, 'r') as data_file:
img_data = data_file.readlines()
img_data = [line.split() for line in img_data]
img_data = [list(map(float, lane)) for lane in img_data]
img_data = [[(lane[i], lane[i + 1]) for i in range(0, len(lane), 2)]
for lane in img_data]
img_data = [lane for lane in img_data if len(lane) >= 2]
return img_data
def load_culane_data(data_dir, file_list_path):
with open(file_list_path, 'r') as file_list:
filepaths = [
os.path.join(data_dir,
line[1 if line[0] == '/' else 0:].rstrip().replace(
'.jpg', '.lines.txt'))
for line in file_list.readlines()
]
data = []
for path in filepaths:
img_data = load_culane_img_data(path)
data.append(img_data)
return data
def eval_predictions(pred_dir,
anno_dir,
list_path,
iou_thresholds=[0.5],
width=30,
official=True,
sequential=False):
logger.info('Calculating metric for List: {}'.format(list_path))
predictions = load_culane_data(pred_dir, list_path)
annotations = load_culane_data(anno_dir, list_path)
img_shape = (590, 1640, 3)
if sequential:
results = map(partial(
culane_metric,
width=width,
official=official,
iou_thresholds=iou_thresholds,
img_shape=img_shape),
predictions,
annotations)
else:
from multiprocessing import Pool, cpu_count
from itertools import repeat
with Pool(cpu_count()) as p:
results = p.starmap(culane_metric,
zip(predictions, annotations,
repeat(width),
repeat(iou_thresholds),
repeat(official), repeat(img_shape)))
mean_f1, mean_prec, mean_recall, total_tp, total_fp, total_fn = 0, 0, 0, 0, 0, 0
ret = {}
for thr in iou_thresholds:
tp = sum(m[thr][0] for m in results)
fp = sum(m[thr][1] for m in results)
fn = sum(m[thr][2] for m in results)
precision = float(tp) / (tp + fp) if tp != 0 else 0
recall = float(tp) / (tp + fn) if tp != 0 else 0
f1 = 2 * precision * recall / (precision + recall) if tp != 0 else 0
logger.info('iou thr: {:.2f}, tp: {}, fp: {}, fn: {},'
'precision: {}, recall: {}, f1: {}'.format(
thr, tp, fp, fn, precision, recall, f1))
mean_f1 += f1 / len(iou_thresholds)
mean_prec += precision / len(iou_thresholds)
mean_recall += recall / len(iou_thresholds)
total_tp += tp
total_fp += fp
total_fn += fn
ret[thr] = {
'TP': tp,
'FP': fp,
'FN': fn,
'Precision': precision,
'Recall': recall,
'F1': f1
}
if len(iou_thresholds) > 2:
logger.info(
'mean result, total_tp: {}, total_fp: {}, total_fn: {},'
'precision: {}, recall: {}, f1: {}'.format(
total_tp, total_fp, total_fn, mean_prec, mean_recall, mean_f1))
ret['mean'] = {
'TP': total_tp,
'FP': total_fp,
'FN': total_fn,
'Precision': mean_prec,
'Recall': mean_recall,
'F1': mean_f1
}
return ret
class CULaneMetric(Metric):
def __init__(self,
cfg,
output_eval=None,
split="test",
dataset_dir="dataset/CULane/"):
super(CULaneMetric, self).__init__()
self.output_eval = "evaluation" if output_eval is None else output_eval
self.dataset_dir = dataset_dir
self.split = split
self.list_path = osp.join(dataset_dir, LIST_FILE[split])
self.predictions = []
self.img_names = []
self.lanes = []
self.eval_results = {}
self.cfg = cfg
self.reset()
def reset(self):
self.predictions = []
self.img_names = []
self.lanes = []
self.eval_results = {}
def get_prediction_string(self, pred):
ys = np.arange(270, 590, 8) / self.cfg.ori_img_h
out = []
for lane in pred:
xs = lane(ys)
valid_mask = (xs >= 0) & (xs < 1)
xs = xs * self.cfg.ori_img_w
lane_xs = xs[valid_mask]
lane_ys = ys[valid_mask] * self.cfg.ori_img_h
lane_xs, lane_ys = lane_xs[::-1], lane_ys[::-1]
lane_str = ' '.join([
'{:.5f} {:.5f}'.format(x, y) for x, y in zip(lane_xs, lane_ys)
])
if lane_str != '':
out.append(lane_str)
return '\n'.join(out)
def accumulate(self):
loss_lines = [[], [], [], []]
for idx, pred in enumerate(self.predictions):
output_dir = os.path.join(self.output_eval,
os.path.dirname(self.img_names[idx]))
output_filename = os.path.basename(self.img_names[
idx])[:-3] + 'lines.txt'
os.makedirs(output_dir, exist_ok=True)
output = self.get_prediction_string(pred)
# store loss lines
lanes = self.lanes[idx]
if len(lanes) - len(pred) in [1, 2, 3, 4]:
loss_lines[len(lanes) - len(pred) - 1].append(self.img_names[
idx])
with open(os.path.join(output_dir, output_filename),
'w') as out_file:
out_file.write(output)
for i, names in enumerate(loss_lines):
with open(
os.path.join(output_dir, 'loss_{}_lines.txt'.format(i + 1)),
'w') as f:
for name in names:
f.write(name + '\n')
for cate, cate_file in CATEGORYS.items():
result = eval_predictions(
self.output_eval,
self.dataset_dir,
os.path.join(self.dataset_dir, cate_file),
iou_thresholds=[0.5],
official=True)
result = eval_predictions(
self.output_eval,
self.dataset_dir,
self.list_path,
iou_thresholds=np.linspace(0.5, 0.95, 10),
official=True)
self.eval_results['F1@50'] = result[0.5]['F1']
self.eval_results['result'] = result
def update(self, inputs, outputs):
assert len(inputs['img_name']) == len(outputs['lanes'])
self.predictions.extend(outputs['lanes'])
self.img_names.extend(inputs['img_name'])
self.lanes.extend(inputs['lane_line'])
def log(self):
logger.info(self.eval_results)
# abstract method for getting metric results
def get_results(self):
return self.eval_results

View File

@@ -0,0 +1,175 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import six
import numpy as np
def get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
det_res = []
k = 0
for i in range(len(bbox_nums)):
cur_image_id = int(image_id[i][0])
det_nums = bbox_nums[i]
for j in range(det_nums):
dt = bboxes[k]
k = k + 1
num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
if int(num_id) < 0:
continue
category_id = label_to_cat_id_map[int(num_id)]
w = xmax - xmin + bias
h = ymax - ymin + bias
bbox = [xmin, ymin, w, h]
dt_res = {
'image_id': cur_image_id,
'category_id': category_id,
'bbox': bbox,
'score': score
}
det_res.append(dt_res)
return det_res
def get_det_poly_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
det_res = []
k = 0
for i in range(len(bbox_nums)):
cur_image_id = int(image_id[i][0])
det_nums = bbox_nums[i]
for j in range(det_nums):
dt = bboxes[k]
k = k + 1
num_id, score, x1, y1, x2, y2, x3, y3, x4, y4 = dt.tolist()
if int(num_id) < 0:
continue
category_id = label_to_cat_id_map[int(num_id)]
rbox = [x1, y1, x2, y2, x3, y3, x4, y4]
dt_res = {
'image_id': cur_image_id,
'category_id': category_id,
'bbox': rbox,
'score': score
}
det_res.append(dt_res)
return det_res
def strip_mask(mask):
row = mask[0, 0, :]
col = mask[0, :, 0]
im_h = len(col) - np.count_nonzero(col == -1)
im_w = len(row) - np.count_nonzero(row == -1)
return mask[:, :im_h, :im_w]
def get_seg_res(masks, bboxes, mask_nums, image_id, label_to_cat_id_map):
import pycocotools.mask as mask_util
seg_res = []
k = 0
for i in range(len(mask_nums)):
cur_image_id = int(image_id[i][0])
det_nums = mask_nums[i]
mask_i = masks[k:k + det_nums]
mask_i = strip_mask(mask_i)
for j in range(det_nums):
mask = mask_i[j].astype(np.uint8)
score = float(bboxes[k][1])
label = int(bboxes[k][0])
k = k + 1
if label == -1:
continue
cat_id = label_to_cat_id_map[label]
rle = mask_util.encode(
np.array(
mask[:, :, None], order="F", dtype="uint8"))[0]
if six.PY3:
if 'counts' in rle:
rle['counts'] = rle['counts'].decode("utf8")
sg_res = {
'image_id': cur_image_id,
'category_id': cat_id,
'segmentation': rle,
'score': score
}
seg_res.append(sg_res)
return seg_res
def get_solov2_segm_res(results, image_id, num_id_to_cat_id_map):
import pycocotools.mask as mask_util
segm_res = []
# for each batch
segms = results['segm'].astype(np.uint8)
clsid_labels = results['cate_label']
clsid_scores = results['cate_score']
lengths = segms.shape[0]
im_id = int(image_id[0][0])
if lengths == 0 or segms is None:
return None
# for each sample
for i in range(lengths - 1):
clsid = int(clsid_labels[i])
catid = num_id_to_cat_id_map[clsid]
score = float(clsid_scores[i])
mask = segms[i]
segm = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
segm['counts'] = segm['counts'].decode('utf8')
coco_res = {
'image_id': im_id,
'category_id': catid,
'segmentation': segm,
'score': score
}
segm_res.append(coco_res)
return segm_res
def get_keypoint_res(results, im_id):
anns = []
preds = results['keypoint']
for idx in range(im_id.shape[0]):
image_id = im_id[idx].item()
kpts, scores = preds[idx]
for kpt, score in zip(kpts, scores):
kpt = kpt.flatten()
ann = {
'image_id': image_id,
'category_id': 1, # XXX hard code
'keypoints': kpt.tolist(),
'score': float(score)
}
x = kpt[0::3]
y = kpt[1::3]
x0, x1, y0, y1 = np.min(x).item(), np.max(x).item(), np.min(y).item(
), np.max(y).item()
ann['area'] = (x1 - x0) * (y1 - y0)
ann['bbox'] = [x0, y0, x1 - x0, y1 - y0]
anns.append(ann)
return anns
def get_pose3d_res(results, im_id):
anns = []
preds = results['pose3d']
for idx in range(im_id.shape[0]):
image_id = im_id[idx].item()
pose3d = preds[idx]
ann = {
'image_id': image_id,
'category_id': 1, # XXX hard code
'pose3d': pose3d.tolist(),
'score': float(1.)
}
anns.append(ann)
return anns

View File

@@ -0,0 +1,571 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
from collections import defaultdict, OrderedDict
import numpy as np
import paddle
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from ..modeling.keypoint_utils import oks_nms, keypoint_pck_accuracy, keypoint_auc, keypoint_epe
from scipy.io import loadmat, savemat
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'KeyPointTopDownCOCOEval', 'KeyPointTopDownCOCOWholeBadyHandEval',
'KeyPointTopDownMPIIEval'
]
class KeyPointTopDownCOCOEval(object):
"""refer to
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
Copyright (c) Microsoft, under the MIT License.
"""
def __init__(self,
anno_file,
num_samples,
num_joints,
output_eval,
iou_type='keypoints',
in_vis_thre=0.2,
oks_thre=0.9,
save_prediction_only=False):
super(KeyPointTopDownCOCOEval, self).__init__()
self.coco = COCO(anno_file)
self.num_samples = num_samples
self.num_joints = num_joints
self.iou_type = iou_type
self.in_vis_thre = in_vis_thre
self.oks_thre = oks_thre
self.output_eval = output_eval
self.res_file = os.path.join(output_eval, "keypoints_results.json")
self.save_prediction_only = save_prediction_only
self.reset()
def reset(self):
self.results = {
'all_preds': np.zeros(
(self.num_samples, self.num_joints, 3), dtype=np.float32),
'all_boxes': np.zeros((self.num_samples, 6)),
'image_path': []
}
self.eval_results = {}
self.idx = 0
def update(self, inputs, outputs):
kpts, _ = outputs['keypoint'][0]
num_images = inputs['image'].shape[0]
self.results['all_preds'][self.idx:self.idx + num_images, :, 0:
3] = kpts[:, :, 0:3]
self.results['all_boxes'][self.idx:self.idx + num_images, 0:2] = inputs[
'center'].numpy()[:, 0:2] if isinstance(
inputs['center'], paddle.Tensor) else inputs['center'][:, 0:2]
self.results['all_boxes'][self.idx:self.idx + num_images, 2:4] = inputs[
'scale'].numpy()[:, 0:2] if isinstance(
inputs['scale'], paddle.Tensor) else inputs['scale'][:, 0:2]
self.results['all_boxes'][self.idx:self.idx + num_images, 4] = np.prod(
inputs['scale'].numpy() * 200,
1) if isinstance(inputs['scale'], paddle.Tensor) else np.prod(
inputs['scale'] * 200, 1)
self.results['all_boxes'][
self.idx:self.idx + num_images,
5] = np.squeeze(inputs['score'].numpy()) if isinstance(
inputs['score'], paddle.Tensor) else np.squeeze(inputs['score'])
if isinstance(inputs['im_id'], paddle.Tensor):
self.results['image_path'].extend(inputs['im_id'].numpy())
else:
self.results['image_path'].extend(inputs['im_id'])
self.idx += num_images
def _write_coco_keypoint_results(self, keypoints):
data_pack = [{
'cat_id': 1,
'cls': 'person',
'ann_type': 'keypoints',
'keypoints': keypoints
}]
results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
if not os.path.exists(self.output_eval):
os.makedirs(self.output_eval)
with open(self.res_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
logger.info(f'The keypoint result is saved to {self.res_file}.')
try:
json.load(open(self.res_file))
except Exception:
content = []
with open(self.res_file, 'r') as f:
for line in f:
content.append(line)
content[-1] = ']'
with open(self.res_file, 'w') as f:
for c in content:
f.write(c)
def _coco_keypoint_results_one_category_kernel(self, data_pack):
cat_id = data_pack['cat_id']
keypoints = data_pack['keypoints']
cat_results = []
for img_kpts in keypoints:
if len(img_kpts) == 0:
continue
_key_points = np.array(
[img_kpts[k]['keypoints'] for k in range(len(img_kpts))])
_key_points = _key_points.reshape(_key_points.shape[0], -1)
result = [{
'image_id': img_kpts[k]['image'],
'category_id': cat_id,
'keypoints': _key_points[k].tolist(),
'score': img_kpts[k]['score'],
'center': list(img_kpts[k]['center']),
'scale': list(img_kpts[k]['scale'])
} for k in range(len(img_kpts))]
cat_results.extend(result)
return cat_results
def get_final_results(self, preds, all_boxes, img_path):
_kpts = []
for idx, kpt in enumerate(preds):
_kpts.append({
'keypoints': kpt,
'center': all_boxes[idx][0:2],
'scale': all_boxes[idx][2:4],
'area': all_boxes[idx][4],
'score': all_boxes[idx][5],
'image': int(img_path[idx])
})
# image x person x (keypoints)
kpts = defaultdict(list)
for kpt in _kpts:
kpts[kpt['image']].append(kpt)
# rescoring and oks nms
num_joints = preds.shape[1]
in_vis_thre = self.in_vis_thre
oks_thre = self.oks_thre
oks_nmsed_kpts = []
for img in kpts.keys():
img_kpts = kpts[img]
for n_p in img_kpts:
box_score = n_p['score']
kpt_score = 0
valid_num = 0
for n_jt in range(0, num_joints):
t_s = n_p['keypoints'][n_jt][2]
if t_s > in_vis_thre:
kpt_score = kpt_score + t_s
valid_num = valid_num + 1
if valid_num != 0:
kpt_score = kpt_score / valid_num
# rescoring
n_p['score'] = kpt_score * box_score
keep = oks_nms([img_kpts[i] for i in range(len(img_kpts))],
oks_thre)
if len(keep) == 0:
oks_nmsed_kpts.append(img_kpts)
else:
oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep])
self._write_coco_keypoint_results(oks_nmsed_kpts)
def accumulate(self):
self.get_final_results(self.results['all_preds'],
self.results['all_boxes'],
self.results['image_path'])
if self.save_prediction_only:
logger.info(f'The keypoint result is saved to {self.res_file} '
'and do not evaluate the mAP.')
return
coco_dt = self.coco.loadRes(self.res_file)
coco_eval = COCOeval(self.coco, coco_dt, 'keypoints')
coco_eval.params.useSegm = None
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
keypoint_stats = []
for ind in range(len(coco_eval.stats)):
keypoint_stats.append((coco_eval.stats[ind]))
self.eval_results['keypoint'] = keypoint_stats
def log(self):
if self.save_prediction_only:
return
stats_names = [
'AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5',
'AR .75', 'AR (M)', 'AR (L)'
]
num_values = len(stats_names)
print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |')
print('|---' * (num_values + 1) + '|')
print(' '.join([
'| {:.3f}'.format(value) for value in self.eval_results['keypoint']
]) + ' |')
def get_results(self):
return self.eval_results
class KeyPointTopDownCOCOWholeBadyHandEval(object):
def __init__(self,
anno_file,
num_samples,
num_joints,
output_eval,
save_prediction_only=False):
super(KeyPointTopDownCOCOWholeBadyHandEval, self).__init__()
self.coco = COCO(anno_file)
self.num_samples = num_samples
self.num_joints = num_joints
self.output_eval = output_eval
self.res_file = os.path.join(output_eval, "keypoints_results.json")
self.save_prediction_only = save_prediction_only
self.parse_dataset()
self.reset()
def parse_dataset(self):
gt_db = []
num_joints = self.num_joints
coco = self.coco
img_ids = coco.getImgIds()
for img_id in img_ids:
ann_ids = coco.getAnnIds(imgIds=img_id, iscrowd=False)
objs = coco.loadAnns(ann_ids)
for obj in objs:
for type in ['left', 'right']:
if (obj[f'{type}hand_valid'] and
max(obj[f'{type}hand_kpts']) > 0):
joints = np.zeros((num_joints, 3), dtype=np.float32)
joints_vis = np.zeros((num_joints, 3), dtype=np.float32)
keypoints = np.array(obj[f'{type}hand_kpts'])
keypoints = keypoints.reshape(-1, 3)
joints[:, :2] = keypoints[:, :2]
joints_vis[:, :2] = np.minimum(1, keypoints[:, 2:3])
gt_db.append({
'bbox': obj[f'{type}hand_box'],
'gt_joints': joints,
'joints_vis': joints_vis,
})
self.db = gt_db
def reset(self):
self.results = {
'preds': np.zeros(
(self.num_samples, self.num_joints, 3), dtype=np.float32),
}
self.eval_results = {}
self.idx = 0
def update(self, inputs, outputs):
kpts, _ = outputs['keypoint'][0]
num_images = inputs['image'].shape[0]
self.results['preds'][self.idx:self.idx + num_images, :, 0:
3] = kpts[:, :, 0:3]
self.idx += num_images
def accumulate(self):
self.get_final_results(self.results['preds'])
if self.save_prediction_only:
logger.info(f'The keypoint result is saved to {self.res_file} '
'and do not evaluate the mAP.')
return
self.eval_results = self.evaluate(self.res_file, ('PCK', 'AUC', 'EPE'))
def get_final_results(self, preds):
kpts = []
for idx, kpt in enumerate(preds):
kpts.append({'keypoints': kpt.tolist()})
self._write_keypoint_results(kpts)
def _write_keypoint_results(self, keypoints):
if not os.path.exists(self.output_eval):
os.makedirs(self.output_eval)
with open(self.res_file, 'w') as f:
json.dump(keypoints, f, sort_keys=True, indent=4)
logger.info(f'The keypoint result is saved to {self.res_file}.')
try:
json.load(open(self.res_file))
except Exception:
content = []
with open(self.res_file, 'r') as f:
for line in f:
content.append(line)
content[-1] = ']'
with open(self.res_file, 'w') as f:
for c in content:
f.write(c)
def log(self):
if self.save_prediction_only:
return
for item, value in self.eval_results.items():
print("{} : {}".format(item, value))
def get_results(self):
return self.eval_results
def evaluate(self, res_file, metrics, pck_thr=0.2, auc_nor=30):
"""Keypoint evaluation.
Args:
res_file (str): Json file stored prediction results.
metrics (str | list[str]): Metric to be performed.
Options: 'PCK', 'AUC', 'EPE'.
pck_thr (float): PCK threshold, default as 0.2.
auc_nor (float): AUC normalization factor, default as 30 pixel.
Returns:
List: Evaluation results for evaluation metric.
"""
info_str = []
with open(res_file, 'r') as fin:
preds = json.load(fin)
assert len(preds) == len(self.db)
outputs = []
gts = []
masks = []
threshold_bbox = []
for pred, item in zip(preds, self.db):
outputs.append(np.array(pred['keypoints'])[:, :-1])
gts.append(np.array(item['gt_joints'])[:, :-1])
masks.append((np.array(item['joints_vis'])[:, 0]) > 0)
if 'PCK' in metrics:
bbox = np.array(item['bbox'])
bbox_thr = np.max(bbox[2:])
threshold_bbox.append(np.array([bbox_thr, bbox_thr]))
outputs = np.array(outputs)
gts = np.array(gts)
masks = np.array(masks)
threshold_bbox = np.array(threshold_bbox)
if 'PCK' in metrics:
_, pck, _ = keypoint_pck_accuracy(outputs, gts, masks, pck_thr,
threshold_bbox)
info_str.append(('PCK', pck))
if 'AUC' in metrics:
info_str.append(('AUC', keypoint_auc(outputs, gts, masks, auc_nor)))
if 'EPE' in metrics:
info_str.append(('EPE', keypoint_epe(outputs, gts, masks)))
name_value = OrderedDict(info_str)
return name_value
class KeyPointTopDownMPIIEval(object):
def __init__(self,
anno_file,
num_samples,
num_joints,
output_eval,
oks_thre=0.9,
save_prediction_only=False):
super(KeyPointTopDownMPIIEval, self).__init__()
self.ann_file = anno_file
self.res_file = os.path.join(output_eval, "keypoints_results.json")
self.save_prediction_only = save_prediction_only
self.reset()
def reset(self):
self.results = []
self.eval_results = {}
self.idx = 0
def update(self, inputs, outputs):
kpts, _ = outputs['keypoint'][0]
num_images = inputs['image'].shape[0]
results = {}
results['preds'] = kpts[:, :, 0:3]
results['boxes'] = np.zeros((num_images, 6))
results['boxes'][:, 0:2] = inputs['center'].numpy()[:, 0:2]
results['boxes'][:, 2:4] = inputs['scale'].numpy()[:, 0:2]
results['boxes'][:, 4] = np.prod(inputs['scale'].numpy() * 200, 1)
results['boxes'][:, 5] = np.squeeze(inputs['score'].numpy())
results['image_path'] = inputs['image_file']
self.results.append(results)
def accumulate(self):
self._mpii_keypoint_results_save()
if self.save_prediction_only:
logger.info(f'The keypoint result is saved to {self.res_file} '
'and do not evaluate the mAP.')
return
self.eval_results = self.evaluate(self.results)
def _mpii_keypoint_results_save(self):
results = []
for res in self.results:
if len(res) == 0:
continue
result = [{
'preds': res['preds'][k].tolist(),
'boxes': res['boxes'][k].tolist(),
'image_path': res['image_path'][k],
} for k in range(len(res))]
results.extend(result)
with open(self.res_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
logger.info(f'The keypoint result is saved to {self.res_file}.')
def log(self):
if self.save_prediction_only:
return
for item, value in self.eval_results.items():
print("{} : {}".format(item, value))
def get_results(self):
return self.eval_results
def evaluate(self, outputs, savepath=None):
"""Evaluate PCKh for MPII dataset. refer to
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
Copyright (c) Microsoft, under the MIT License.
Args:
outputs(list(preds, boxes)):
* preds (np.ndarray[N,K,3]): The first two dimensions are
coordinates, score is the third dimension of the array.
* boxes (np.ndarray[N,6]): [center[0], center[1], scale[0]
, scale[1],area, score]
Returns:
dict: PCKh for each joint
"""
kpts = []
for output in outputs:
preds = output['preds']
batch_size = preds.shape[0]
for i in range(batch_size):
kpts.append({'keypoints': preds[i]})
preds = np.stack([kpt['keypoints'] for kpt in kpts])
# convert 0-based index to 1-based index,
# and get the first two dimensions.
preds = preds[..., :2] + 1.0
if savepath is not None:
pred_file = os.path.join(savepath, 'pred.mat')
savemat(pred_file, mdict={'preds': preds})
SC_BIAS = 0.6
threshold = 0.5
gt_file = os.path.join(
os.path.dirname(self.ann_file), 'mpii_gt_val.mat')
gt_dict = loadmat(gt_file)
dataset_joints = gt_dict['dataset_joints']
jnt_missing = gt_dict['jnt_missing']
pos_gt_src = gt_dict['pos_gt_src']
headboxes_src = gt_dict['headboxes_src']
pos_pred_src = np.transpose(preds, [1, 2, 0])
head = np.where(dataset_joints == 'head')[1][0]
lsho = np.where(dataset_joints == 'lsho')[1][0]
lelb = np.where(dataset_joints == 'lelb')[1][0]
lwri = np.where(dataset_joints == 'lwri')[1][0]
lhip = np.where(dataset_joints == 'lhip')[1][0]
lkne = np.where(dataset_joints == 'lkne')[1][0]
lank = np.where(dataset_joints == 'lank')[1][0]
rsho = np.where(dataset_joints == 'rsho')[1][0]
relb = np.where(dataset_joints == 'relb')[1][0]
rwri = np.where(dataset_joints == 'rwri')[1][0]
rkne = np.where(dataset_joints == 'rkne')[1][0]
rank = np.where(dataset_joints == 'rank')[1][0]
rhip = np.where(dataset_joints == 'rhip')[1][0]
jnt_visible = 1 - jnt_missing
uv_error = pos_pred_src - pos_gt_src
uv_err = np.linalg.norm(uv_error, axis=1)
headsizes = headboxes_src[1, :, :] - headboxes_src[0, :, :]
headsizes = np.linalg.norm(headsizes, axis=0)
headsizes *= SC_BIAS
scale = headsizes * np.ones((len(uv_err), 1), dtype=np.float32)
scaled_uv_err = uv_err / scale
scaled_uv_err = scaled_uv_err * jnt_visible
jnt_count = np.sum(jnt_visible, axis=1)
less_than_threshold = (scaled_uv_err <= threshold) * jnt_visible
PCKh = 100. * np.sum(less_than_threshold, axis=1) / jnt_count
# save
rng = np.arange(0, 0.5 + 0.01, 0.01)
pckAll = np.zeros((len(rng), 16), dtype=np.float32)
for r, threshold in enumerate(rng):
less_than_threshold = (scaled_uv_err <= threshold) * jnt_visible
pckAll[r, :] = 100. * np.sum(less_than_threshold,
axis=1) / jnt_count
PCKh = np.ma.array(PCKh, mask=False)
PCKh.mask[6:8] = True
jnt_count = np.ma.array(jnt_count, mask=False)
jnt_count.mask[6:8] = True
jnt_ratio = jnt_count / np.sum(jnt_count).astype(np.float64)
name_value = [ #noqa
('Head', PCKh[head]),
('Shoulder', 0.5 * (PCKh[lsho] + PCKh[rsho])),
('Elbow', 0.5 * (PCKh[lelb] + PCKh[relb])),
('Wrist', 0.5 * (PCKh[lwri] + PCKh[rwri])),
('Hip', 0.5 * (PCKh[lhip] + PCKh[rhip])),
('Knee', 0.5 * (PCKh[lkne] + PCKh[rkne])),
('Ankle', 0.5 * (PCKh[lank] + PCKh[rank])),
('PCKh', np.sum(PCKh * jnt_ratio)),
('PCKh@0.1', np.sum(pckAll[11, :] * jnt_ratio))
]
name_value = OrderedDict(name_value)
return name_value
def _sort_and_unique_bboxes(self, kpts, key='bbox_id'):
"""sort kpts and remove the repeated ones."""
kpts = sorted(kpts, key=lambda x: x[key])
num = len(kpts)
for i in range(num - 1, 0, -1):
if kpts[i][key] == kpts[i - 1][key]:
del kpts[i]
return kpts

View File

@@ -0,0 +1,436 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import os
import sys
import numpy as np
import itertools
import paddle
from ppdet.modeling.rbox_utils import poly2rbox_np
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'draw_pr_curve',
'bbox_area',
'jaccard_overlap',
'prune_zero_padding',
'DetectionMAP',
'ap_per_class',
'compute_ap',
]
def draw_pr_curve(precision,
recall,
iou=0.5,
out_dir='pr_curve',
file_name='precision_recall_curve.jpg'):
if not os.path.exists(out_dir):
os.makedirs(out_dir)
output_path = os.path.join(out_dir, file_name)
try:
import matplotlib.pyplot as plt
except Exception as e:
logger.error('Matplotlib not found, plaese install matplotlib.'
'for example: `pip install matplotlib`.')
raise e
plt.cla()
plt.figure('P-R Curve')
plt.title('Precision/Recall Curve(IoU={})'.format(iou))
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.grid(True)
plt.plot(recall, precision)
plt.savefig(output_path)
def bbox_area(bbox, is_bbox_normalized):
"""
Calculate area of a bounding box
"""
norm = 1. - float(is_bbox_normalized)
width = bbox[2] - bbox[0] + norm
height = bbox[3] - bbox[1] + norm
return width * height
def jaccard_overlap(pred, gt, is_bbox_normalized=False):
"""
Calculate jaccard overlap ratio between two bounding box
"""
if pred[0] >= gt[2] or pred[2] <= gt[0] or \
pred[1] >= gt[3] or pred[3] <= gt[1]:
return 0.
inter_xmin = max(pred[0], gt[0])
inter_ymin = max(pred[1], gt[1])
inter_xmax = min(pred[2], gt[2])
inter_ymax = min(pred[3], gt[3])
inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax],
is_bbox_normalized)
pred_size = bbox_area(pred, is_bbox_normalized)
gt_size = bbox_area(gt, is_bbox_normalized)
overlap = float(inter_size) / (pred_size + gt_size - inter_size)
return overlap
def calc_rbox_iou(pred, gt_poly):
"""
calc iou between rotated bbox
"""
# calc iou of bounding box for speedup
pred = np.array(pred, np.float32).reshape(-1, 2)
gt_poly = np.array(gt_poly, np.float32).reshape(-1, 2)
pred_rect = [
np.min(pred[:, 0]), np.min(pred[:, 1]), np.max(pred[:, 0]),
np.max(pred[:, 1])
]
gt_rect = [
np.min(gt_poly[:, 0]), np.min(gt_poly[:, 1]), np.max(gt_poly[:, 0]),
np.max(gt_poly[:, 1])
]
iou = jaccard_overlap(pred_rect, gt_rect, False)
if iou <= 0:
return iou
# calc rbox iou
pred_rbox = poly2rbox_np(pred.reshape(-1, 8)).reshape(-1, 5)
gt_rbox = poly2rbox_np(gt_poly.reshape(-1, 8)).reshape(-1, 5)
try:
from ext_op import rbox_iou
except Exception as e:
print("import custom_ops error, try install ext_op " \
"following ppdet/ext_op/README.md", e)
sys.stdout.flush()
sys.exit(-1)
pd_gt_rbox = paddle.to_tensor(gt_rbox, dtype='float32')
pd_pred_rbox = paddle.to_tensor(pred_rbox, dtype='float32')
iou = rbox_iou(pd_gt_rbox, pd_pred_rbox)
iou = iou.numpy()
return iou[0][0]
def prune_zero_padding(gt_box, gt_label, difficult=None):
valid_cnt = 0
for i in range(len(gt_box)):
if (gt_box[i] == 0).all():
break
valid_cnt += 1
return (gt_box[:valid_cnt], gt_label[:valid_cnt], difficult[:valid_cnt]
if difficult is not None else None)
class DetectionMAP(object):
"""
Calculate detection mean average precision.
Currently support two types: 11point and integral
Args:
class_num (int): The class number.
overlap_thresh (float): The threshold of overlap
ratio between prediction bounding box and
ground truth bounding box for deciding
true/false positive. Default 0.5.
map_type (str): Calculation method of mean average
precision, currently support '11point' and
'integral'. Default '11point'.
is_bbox_normalized (bool): Whether bounding boxes
is normalized to range[0, 1]. Default False.
evaluate_difficult (bool): Whether to evaluate
difficult bounding boxes. Default False.
catid2name (dict): Mapping between category id and category name.
classwise (bool): Whether per-category AP and draw
P-R Curve or not.
"""
def __init__(self,
class_num,
overlap_thresh=0.5,
map_type='11point',
is_bbox_normalized=False,
evaluate_difficult=False,
catid2name=None,
classwise=False):
self.class_num = class_num
self.overlap_thresh = overlap_thresh
assert map_type in ['11point', 'integral'], \
"map_type currently only support '11point' "\
"and 'integral'"
self.map_type = map_type
self.is_bbox_normalized = is_bbox_normalized
self.evaluate_difficult = evaluate_difficult
self.classwise = classwise
self.classes = []
for cname in catid2name.values():
self.classes.append(cname)
self.reset()
def update(self, bbox, score, label, gt_box, gt_label, difficult=None):
"""
Update metric statics from given prediction and ground
truth infomations.
"""
if difficult is None:
difficult = np.zeros_like(gt_label)
# record class gt count
for gtl, diff in zip(gt_label, difficult):
if self.evaluate_difficult or int(diff) == 0:
self.class_gt_counts[int(np.array(gtl))] += 1
# record class score positive
visited = [False] * len(gt_label)
for b, s, l in zip(bbox, score, label):
pred = b.tolist() if isinstance(b, np.ndarray) else b
max_idx = -1
max_overlap = -1.0
for i, gl in enumerate(gt_label):
if int(gl) == int(l):
if len(gt_box[i]) == 8:
overlap = calc_rbox_iou(pred, gt_box[i])
else:
overlap = jaccard_overlap(pred, gt_box[i],
self.is_bbox_normalized)
if overlap > max_overlap:
max_overlap = overlap
max_idx = i
if max_overlap > self.overlap_thresh:
if self.evaluate_difficult or \
int(np.array(difficult[max_idx])) == 0:
if not visited[max_idx]:
self.class_score_poss[int(l)].append([s, 1.0])
visited[max_idx] = True
else:
self.class_score_poss[int(l)].append([s, 0.0])
else:
self.class_score_poss[int(l)].append([s, 0.0])
def reset(self):
"""
Reset metric statics
"""
self.class_score_poss = [[] for _ in range(self.class_num)]
self.class_gt_counts = [0] * self.class_num
self.mAP = 0.0
def accumulate(self):
"""
Accumulate metric results and calculate mAP
"""
mAP = 0.
valid_cnt = 0
eval_results = []
for score_pos, count in zip(self.class_score_poss,
self.class_gt_counts):
if count == 0: continue
if len(score_pos) == 0:
valid_cnt += 1
continue
accum_tp_list, accum_fp_list = \
self._get_tp_fp_accum(score_pos)
precision = []
recall = []
for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list):
precision.append(float(ac_tp) / (ac_tp + ac_fp))
recall.append(float(ac_tp) / count)
one_class_ap = 0.0
if self.map_type == '11point':
max_precisions = [0.] * 11
start_idx = len(precision) - 1
for j in range(10, -1, -1):
for i in range(start_idx, -1, -1):
if recall[i] < float(j) / 10.:
start_idx = i
if j > 0:
max_precisions[j - 1] = max_precisions[j]
break
else:
if max_precisions[j] < precision[i]:
max_precisions[j] = precision[i]
one_class_ap = sum(max_precisions) / 11.
mAP += one_class_ap
valid_cnt += 1
elif self.map_type == 'integral':
import math
prev_recall = 0.
for i in range(len(precision)):
recall_gap = math.fabs(recall[i] - prev_recall)
if recall_gap > 1e-6:
one_class_ap += precision[i] * recall_gap
prev_recall = recall[i]
mAP += one_class_ap
valid_cnt += 1
else:
logger.error("Unspported mAP type {}".format(self.map_type))
sys.exit(1)
eval_results.append({
'class': self.classes[valid_cnt - 1],
'ap': one_class_ap,
'precision': precision,
'recall': recall,
})
self.eval_results = eval_results
self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP
def get_map(self):
"""
Get mAP result
"""
if self.mAP is None:
logger.error("mAP is not calculated.")
if self.classwise:
# Compute per-category AP and PR curve
try:
from terminaltables import AsciiTable
except Exception as e:
logger.error(
'terminaltables not found, plaese install terminaltables. '
'for example: `pip install terminaltables`.')
raise e
results_per_category = []
for eval_result in self.eval_results:
results_per_category.append(
(str(eval_result['class']),
'{:0.3f}'.format(float(eval_result['ap']))))
draw_pr_curve(
eval_result['precision'],
eval_result['recall'],
out_dir='voc_pr_curve',
file_name='{}_precision_recall_curve.jpg'.format(
eval_result['class']))
num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (num_columns // 2)
results_2d = itertools.zip_longest(* [
results_flatten[i::num_columns] for i in range(num_columns)
])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
logger.info('Per-category of VOC AP: \n{}'.format(table.table))
logger.info(
"per-category PR curve has output to voc_pr_curve folder.")
return self.mAP
def _get_tp_fp_accum(self, score_pos_list):
"""
Calculate accumulating true/false positive results from
[score, pos] records
"""
sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True)
accum_tp = 0
accum_fp = 0
accum_tp_list = []
accum_fp_list = []
for (score, pos) in sorted_list:
accum_tp += int(pos)
accum_tp_list.append(accum_tp)
accum_fp += 1 - int(pos)
accum_fp_list.append(accum_fp)
return accum_tp_list, accum_fp_list
def ap_per_class(tp, conf, pred_cls, target_cls):
"""
Computes the average precision, given the recall and precision curves.
Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics.
Args:
tp (list): True positives.
conf (list): Objectness value from 0-1.
pred_cls (list): Predicted object classes.
target_cls (list): Target object classes.
"""
tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(
pred_cls), np.array(target_cls)
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))
# Create Precision-Recall curve and compute AP for each class
ap, p, r = [], [], []
for c in unique_classes:
i = pred_cls == c
n_gt = sum(target_cls == c) # Number of ground truth objects
n_p = sum(i) # Number of predicted objects
if (n_p == 0) and (n_gt == 0):
continue
elif (n_p == 0) or (n_gt == 0):
ap.append(0)
r.append(0)
p.append(0)
else:
# Accumulate FPs and TPs
fpc = np.cumsum(1 - tp[i])
tpc = np.cumsum(tp[i])
# Recall
recall_curve = tpc / (n_gt + 1e-16)
r.append(tpc[-1] / (n_gt + 1e-16))
# Precision
precision_curve = tpc / (tpc + fpc)
p.append(tpc[-1] / (tpc[-1] + fpc[-1]))
# AP from recall-precision curve
ap.append(compute_ap(recall_curve, precision_curve))
return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(
p)
def compute_ap(recall, precision):
"""
Computes the average precision, given the recall and precision curves.
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
Args:
recall (list): The recall curve.
precision (list): The precision curve.
Returns:
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap

View File

@@ -0,0 +1,473 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import copy
import sys
import math
from collections import defaultdict
import numpy as np
import pandas as pd
from .metrics import Metric
try:
import motmetrics as mm
from motmetrics.math_util import quiet_divide
metrics = mm.metrics.motchallenge_metrics
mh = mm.metrics.create()
except:
print(
'Warning: Unable to use MCMOT metric, please install motmetrics, for example: `pip install motmetrics`, see https://github.com/longcw/py-motmetrics'
)
pass
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['MCMOTEvaluator', 'MCMOTMetric']
METRICS_LIST = [
'num_frames', 'num_matches', 'num_switches', 'num_transfer', 'num_ascend',
'num_migrate', 'num_false_positives', 'num_misses', 'num_detections',
'num_objects', 'num_predictions', 'num_unique_objects', 'mostly_tracked',
'partially_tracked', 'mostly_lost', 'num_fragmentations', 'motp', 'mota',
'precision', 'recall', 'idfp', 'idfn', 'idtp', 'idp', 'idr', 'idf1'
]
NAME_MAP = {
'num_frames': 'num_frames',
'num_matches': 'num_matches',
'num_switches': 'IDs',
'num_transfer': 'IDt',
'num_ascend': 'IDa',
'num_migrate': 'IDm',
'num_false_positives': 'FP',
'num_misses': 'FN',
'num_detections': 'num_detections',
'num_objects': 'num_objects',
'num_predictions': 'num_predictions',
'num_unique_objects': 'GT',
'mostly_tracked': 'MT',
'partially_tracked': 'partially_tracked',
'mostly_lost': 'ML',
'num_fragmentations': 'FM',
'motp': 'MOTP',
'mota': 'MOTA',
'precision': 'Prcn',
'recall': 'Rcll',
'idfp': 'idfp',
'idfn': 'idfn',
'idtp': 'idtp',
'idp': 'IDP',
'idr': 'IDR',
'idf1': 'IDF1'
}
def parse_accs_metrics(seq_acc, index_name, verbose=False):
"""
Parse the evaluation indicators of multiple MOTAccumulator
"""
mh = mm.metrics.create()
summary = MCMOTEvaluator.get_summary(seq_acc, index_name, METRICS_LIST)
summary.loc['OVERALL', 'motp'] = (summary['motp'] * summary['num_detections']).sum() / \
summary.loc['OVERALL', 'num_detections']
if verbose:
strsummary = mm.io.render_summary(
summary, formatters=mh.formatters, namemap=NAME_MAP)
print(strsummary)
return summary
def seqs_overall_metrics(summary_df, verbose=False):
"""
Calculate overall metrics for multiple sequences
"""
add_col = [
'num_frames', 'num_matches', 'num_switches', 'num_transfer',
'num_ascend', 'num_migrate', 'num_false_positives', 'num_misses',
'num_detections', 'num_objects', 'num_predictions',
'num_unique_objects', 'mostly_tracked', 'partially_tracked',
'mostly_lost', 'num_fragmentations', 'idfp', 'idfn', 'idtp'
]
calc_col = ['motp', 'mota', 'precision', 'recall', 'idp', 'idr', 'idf1']
calc_df = summary_df.copy()
overall_dic = {}
for col in add_col:
overall_dic[col] = calc_df[col].sum()
for col in calc_col:
overall_dic[col] = getattr(MCMOTMetricOverall, col + '_overall')(
calc_df, overall_dic)
overall_df = pd.DataFrame(overall_dic, index=['overall_calc'])
calc_df = pd.concat([calc_df, overall_df])
if verbose:
mh = mm.metrics.create()
str_calc_df = mm.io.render_summary(
calc_df, formatters=mh.formatters, namemap=NAME_MAP)
print(str_calc_df)
return calc_df
class MCMOTMetricOverall(object):
def motp_overall(summary_df, overall_dic):
motp = quiet_divide((summary_df['motp'] *
summary_df['num_detections']).sum(),
overall_dic['num_detections'])
return motp
def mota_overall(summary_df, overall_dic):
del summary_df
mota = 1. - quiet_divide(
(overall_dic['num_misses'] + overall_dic['num_switches'] +
overall_dic['num_false_positives']), overall_dic['num_objects'])
return mota
def precision_overall(summary_df, overall_dic):
del summary_df
precision = quiet_divide(overall_dic['num_detections'], (
overall_dic['num_false_positives'] + overall_dic['num_detections']))
return precision
def recall_overall(summary_df, overall_dic):
del summary_df
recall = quiet_divide(overall_dic['num_detections'],
overall_dic['num_objects'])
return recall
def idp_overall(summary_df, overall_dic):
del summary_df
idp = quiet_divide(overall_dic['idtp'],
(overall_dic['idtp'] + overall_dic['idfp']))
return idp
def idr_overall(summary_df, overall_dic):
del summary_df
idr = quiet_divide(overall_dic['idtp'],
(overall_dic['idtp'] + overall_dic['idfn']))
return idr
def idf1_overall(summary_df, overall_dic):
del summary_df
idf1 = quiet_divide(2. * overall_dic['idtp'], (
overall_dic['num_objects'] + overall_dic['num_predictions']))
return idf1
def read_mcmot_results_union(filename, is_gt, is_ignore):
results_dict = dict()
if os.path.isfile(filename):
all_result = np.loadtxt(filename, delimiter=',')
if all_result.shape[0] == 0 or all_result.shape[1] < 7:
return results_dict
if is_ignore:
return results_dict
if is_gt:
# only for test use
all_result = all_result[all_result[:, 7] != 0]
all_result[:, 7] = all_result[:, 7] - 1
if all_result.shape[0] == 0:
return results_dict
class_unique = np.unique(all_result[:, 7])
last_max_id = 0
result_cls_list = []
for cls in class_unique:
result_cls_split = all_result[all_result[:, 7] == cls]
result_cls_split[:, 1] = result_cls_split[:, 1] + last_max_id
# make sure track id different between every category
last_max_id = max(np.unique(result_cls_split[:, 1])) + 1
result_cls_list.append(result_cls_split)
results_con = np.concatenate(result_cls_list)
for line in range(len(results_con)):
linelist = results_con[line]
fid = int(linelist[0])
if fid < 1:
continue
results_dict.setdefault(fid, list())
if is_gt:
score = 1
else:
score = float(linelist[6])
tlwh = tuple(map(float, linelist[2:6]))
target_id = int(linelist[1])
cls = int(linelist[7])
results_dict[fid].append((tlwh, target_id, cls, score))
return results_dict
def read_mcmot_results(filename, is_gt, is_ignore):
results_dict = dict()
if os.path.isfile(filename):
with open(filename, 'r') as f:
for line in f.readlines():
linelist = line.strip().split(',')
if len(linelist) < 7:
continue
fid = int(linelist[0])
if fid < 1:
continue
cid = int(linelist[7])
if is_gt:
score = 1
# only for test use
cid -= 1
else:
score = float(linelist[6])
cls_result_dict = results_dict.setdefault(cid, dict())
cls_result_dict.setdefault(fid, list())
tlwh = tuple(map(float, linelist[2:6]))
target_id = int(linelist[1])
cls_result_dict[fid].append((tlwh, target_id, score))
return results_dict
def read_results(filename,
data_type,
is_gt=False,
is_ignore=False,
multi_class=False,
union=False):
if data_type in ['mcmot', 'lab']:
if multi_class:
if union:
# The results are evaluated by union all the categories.
# Track IDs between different categories cannot be duplicate.
read_fun = read_mcmot_results_union
else:
# The results are evaluated separately by category.
read_fun = read_mcmot_results
else:
raise ValueError('multi_class: {}, MCMOT should have cls_id.'.
format(multi_class))
else:
raise ValueError('Unknown data type: {}'.format(data_type))
return read_fun(filename, is_gt, is_ignore)
def unzip_objs(objs):
if len(objs) > 0:
tlwhs, ids, scores = zip(*objs)
else:
tlwhs, ids, scores = [], [], []
tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4)
return tlwhs, ids, scores
def unzip_objs_cls(objs):
if len(objs) > 0:
tlwhs, ids, cls, scores = zip(*objs)
else:
tlwhs, ids, cls, scores = [], [], [], []
tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4)
ids = np.array(ids)
cls = np.array(cls)
scores = np.array(scores)
return tlwhs, ids, cls, scores
class MCMOTEvaluator(object):
def __init__(self, data_root, seq_name, data_type, num_classes):
self.data_root = data_root
self.seq_name = seq_name
self.data_type = data_type
self.num_classes = num_classes
self.load_annotations()
try:
import motmetrics as mm
mm.lap.default_solver = 'lap'
except Exception as e:
raise RuntimeError(
'Unable to use MCMOT metric, please install motmetrics, for example: `pip install motmetrics`, see https://github.com/longcw/py-motmetrics'
)
self.reset_accumulator()
self.class_accs = []
def load_annotations(self):
assert self.data_type == 'mcmot'
self.gt_filename = os.path.join(self.data_root, '../', 'sequences',
'{}.txt'.format(self.seq_name))
if not os.path.exists(self.gt_filename):
logger.warning(
"gt_filename '{}' of MCMOTEvaluator is not exist, so the MOTA will be -INF."
)
def reset_accumulator(self):
self.acc = mm.MOTAccumulator(auto_id=True)
def eval_frame_dict(self, trk_objs, gt_objs, rtn_events=False, union=False):
if union:
trk_tlwhs, trk_ids, trk_cls = unzip_objs_cls(trk_objs)[:3]
gt_tlwhs, gt_ids, gt_cls = unzip_objs_cls(gt_objs)[:3]
# get distance matrix
iou_distance = mm.distances.iou_matrix(
gt_tlwhs, trk_tlwhs, max_iou=0.5)
# Set the distance between objects of different categories to nan
gt_cls_len = len(gt_cls)
trk_cls_len = len(trk_cls)
# When the number of GT or Trk is 0, iou_distance dimension is (0,0)
if gt_cls_len != 0 and trk_cls_len != 0:
gt_cls = gt_cls.reshape(gt_cls_len, 1)
gt_cls = np.repeat(gt_cls, trk_cls_len, axis=1)
trk_cls = trk_cls.reshape(1, trk_cls_len)
trk_cls = np.repeat(trk_cls, gt_cls_len, axis=0)
iou_distance = np.where(gt_cls == trk_cls, iou_distance, np.nan)
else:
trk_tlwhs, trk_ids = unzip_objs(trk_objs)[:2]
gt_tlwhs, gt_ids = unzip_objs(gt_objs)[:2]
# get distance matrix
iou_distance = mm.distances.iou_matrix(
gt_tlwhs, trk_tlwhs, max_iou=0.5)
self.acc.update(gt_ids, trk_ids, iou_distance)
if rtn_events and iou_distance.size > 0 and hasattr(self.acc,
'mot_events'):
events = self.acc.mot_events # only supported by https://github.com/longcw/py-motmetrics
else:
events = None
return events
def eval_file(self, result_filename):
# evaluation of each category
gt_frame_dict = read_results(
self.gt_filename,
self.data_type,
is_gt=True,
multi_class=True,
union=False)
result_frame_dict = read_results(
result_filename,
self.data_type,
is_gt=False,
multi_class=True,
union=False)
for cid in range(self.num_classes):
self.reset_accumulator()
cls_result_frame_dict = result_frame_dict.setdefault(cid, dict())
cls_gt_frame_dict = gt_frame_dict.setdefault(cid, dict())
# only labeled frames will be evaluated
frames = sorted(list(set(cls_gt_frame_dict.keys())))
for frame_id in frames:
trk_objs = cls_result_frame_dict.get(frame_id, [])
gt_objs = cls_gt_frame_dict.get(frame_id, [])
self.eval_frame_dict(trk_objs, gt_objs, rtn_events=False)
self.class_accs.append(self.acc)
return self.class_accs
@staticmethod
def get_summary(accs,
names,
metrics=('mota', 'num_switches', 'idp', 'idr', 'idf1',
'precision', 'recall')):
names = copy.deepcopy(names)
if metrics is None:
metrics = mm.metrics.motchallenge_metrics
metrics = copy.deepcopy(metrics)
mh = mm.metrics.create()
summary = mh.compute_many(
accs, metrics=metrics, names=names, generate_overall=True)
return summary
@staticmethod
def save_summary(summary, filename):
import pandas as pd
writer = pd.ExcelWriter(filename)
summary.to_excel(writer)
writer.save()
class MCMOTMetric(Metric):
def __init__(self, num_classes, save_summary=False):
self.num_classes = num_classes
self.save_summary = save_summary
self.MCMOTEvaluator = MCMOTEvaluator
self.result_root = None
self.reset()
self.seqs_overall = defaultdict(list)
def reset(self):
self.accs = []
self.seqs = []
def update(self, data_root, seq, data_type, result_root, result_filename):
evaluator = self.MCMOTEvaluator(data_root, seq, data_type,
self.num_classes)
seq_acc = evaluator.eval_file(result_filename)
self.accs.append(seq_acc)
self.seqs.append(seq)
self.result_root = result_root
cls_index_name = [
'{}_{}'.format(seq, i) for i in range(self.num_classes)
]
summary = parse_accs_metrics(seq_acc, cls_index_name)
summary.rename(
index={'OVERALL': '{}_OVERALL'.format(seq)}, inplace=True)
for row in range(len(summary)):
self.seqs_overall[row].append(summary.iloc[row:row + 1])
def accumulate(self):
self.cls_summary_list = []
for row in range(self.num_classes):
seqs_cls_df = pd.concat(self.seqs_overall[row])
seqs_cls_summary = seqs_overall_metrics(seqs_cls_df)
cls_summary_overall = seqs_cls_summary.iloc[-1:].copy()
cls_summary_overall.rename(
index={'overall_calc': 'overall_calc_{}'.format(row)},
inplace=True)
self.cls_summary_list.append(cls_summary_overall)
def log(self):
seqs_summary = seqs_overall_metrics(
pd.concat(self.seqs_overall[self.num_classes]), verbose=True)
class_summary = seqs_overall_metrics(
pd.concat(self.cls_summary_list), verbose=True)
def get_results(self):
return 1

View File

@@ -0,0 +1,505 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import json
import paddle
import numpy as np
import typing
from collections import defaultdict
from pathlib import Path
from .map_utils import prune_zero_padding, DetectionMAP
from .coco_utils import get_infer_results, cocoapi_eval
from .widerface_utils import face_eval_run
from ppdet.data.source.category import get_categories
from ppdet.modeling.rbox_utils import poly2rbox_np
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'Metric', 'COCOMetric', 'VOCMetric', 'WiderFaceMetric', 'get_infer_results',
'RBoxMetric', 'SNIPERCOCOMetric'
]
COCO_SIGMAS = np.array([
.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87,
.89, .89
]) / 10.0
CROWD_SIGMAS = np.array(
[.79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89, .79,
.79]) / 10.0
class Metric(paddle.metric.Metric):
def name(self):
return self.__class__.__name__
def reset(self):
pass
def accumulate(self):
pass
# paddle.metric.Metric defined :metch:`update`, :meth:`accumulate`
# :metch:`reset`, in ppdet, we also need following 2 methods:
# abstract method for logging metric results
def log(self):
pass
# abstract method for getting metric results
def get_results(self):
pass
class COCOMetric(Metric):
def __init__(self, anno_file, **kwargs):
self.anno_file = anno_file
self.clsid2catid = kwargs.get('clsid2catid', None)
if self.clsid2catid is None:
self.clsid2catid, _ = get_categories('COCO', anno_file)
self.classwise = kwargs.get('classwise', False)
self.output_eval = kwargs.get('output_eval', None)
# TODO: bias should be unified
self.bias = kwargs.get('bias', 0)
self.save_prediction_only = kwargs.get('save_prediction_only', False)
self.iou_type = kwargs.get('IouType', 'bbox')
if not self.save_prediction_only:
assert os.path.isfile(anno_file), \
"anno_file {} not a file".format(anno_file)
if self.output_eval is not None:
Path(self.output_eval).mkdir(exist_ok=True)
self.reset()
def reset(self):
# only bbox and mask evaluation support currently
self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []}
self.eval_results = {}
def update(self, inputs, outputs):
outs = {}
# outputs Tensor -> numpy.ndarray
for k, v in outputs.items():
outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v
# multi-scale inputs: all inputs have same im_id
if isinstance(inputs, typing.Sequence):
im_id = inputs[0]['im_id']
else:
im_id = inputs['im_id']
outs['im_id'] = im_id.numpy() if isinstance(im_id,
paddle.Tensor) else im_id
infer_results = get_infer_results(
outs, self.clsid2catid, bias=self.bias)
self.results['bbox'] += infer_results[
'bbox'] if 'bbox' in infer_results else []
self.results['mask'] += infer_results[
'mask'] if 'mask' in infer_results else []
self.results['segm'] += infer_results[
'segm'] if 'segm' in infer_results else []
self.results['keypoint'] += infer_results[
'keypoint'] if 'keypoint' in infer_results else []
def accumulate(self):
if len(self.results['bbox']) > 0:
output = "bbox.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['bbox'], f)
logger.info('The bbox result is saved to bbox.json.')
if self.save_prediction_only:
logger.info('The bbox result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
bbox_stats = cocoapi_eval(
output,
'bbox',
anno_file=self.anno_file,
classwise=self.classwise)
self.eval_results['bbox'] = bbox_stats
sys.stdout.flush()
if len(self.results['mask']) > 0:
output = "mask.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['mask'], f)
logger.info('The mask result is saved to mask.json.')
if self.save_prediction_only:
logger.info('The mask result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
seg_stats = cocoapi_eval(
output,
'segm',
anno_file=self.anno_file,
classwise=self.classwise)
self.eval_results['mask'] = seg_stats
sys.stdout.flush()
if len(self.results['segm']) > 0:
output = "segm.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['segm'], f)
logger.info('The segm result is saved to segm.json.')
if self.save_prediction_only:
logger.info('The segm result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
seg_stats = cocoapi_eval(
output,
'segm',
anno_file=self.anno_file,
classwise=self.classwise)
self.eval_results['mask'] = seg_stats
sys.stdout.flush()
if len(self.results['keypoint']) > 0:
output = "keypoint.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['keypoint'], f)
logger.info('The keypoint result is saved to keypoint.json.')
if self.save_prediction_only:
logger.info('The keypoint result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
style = 'keypoints'
use_area = True
sigmas = COCO_SIGMAS
if self.iou_type == 'keypoints_crowd':
style = 'keypoints_crowd'
use_area = False
sigmas = CROWD_SIGMAS
keypoint_stats = cocoapi_eval(
output,
style,
anno_file=self.anno_file,
classwise=self.classwise,
sigmas=sigmas,
use_area=use_area)
self.eval_results['keypoint'] = keypoint_stats
sys.stdout.flush()
def log(self):
pass
def get_results(self):
return self.eval_results
class VOCMetric(Metric):
def __init__(self,
label_list,
class_num=20,
overlap_thresh=0.5,
map_type='11point',
is_bbox_normalized=False,
evaluate_difficult=False,
classwise=False,
output_eval=None,
save_prediction_only=False):
assert os.path.isfile(label_list), \
"label_list {} not a file".format(label_list)
self.clsid2catid, self.catid2name = get_categories('VOC', label_list)
self.overlap_thresh = overlap_thresh
self.map_type = map_type
self.evaluate_difficult = evaluate_difficult
self.output_eval = output_eval
self.save_prediction_only = save_prediction_only
self.detection_map = DetectionMAP(
class_num=class_num,
overlap_thresh=overlap_thresh,
map_type=map_type,
is_bbox_normalized=is_bbox_normalized,
evaluate_difficult=evaluate_difficult,
catid2name=self.catid2name,
classwise=classwise)
self.reset()
def reset(self):
self.results = {'bbox': [], 'score': [], 'label': []}
self.detection_map.reset()
def update(self, inputs, outputs):
bbox_np = outputs['bbox'].numpy() if isinstance(
outputs['bbox'], paddle.Tensor) else outputs['bbox']
bboxes = bbox_np[:, 2:]
scores = bbox_np[:, 1]
labels = bbox_np[:, 0]
bbox_lengths = outputs['bbox_num'].numpy() if isinstance(
outputs['bbox_num'], paddle.Tensor) else outputs['bbox_num']
self.results['bbox'].append(bboxes.tolist())
self.results['score'].append(scores.tolist())
self.results['label'].append(labels.tolist())
if bboxes.shape == (1, 1) or bboxes is None:
return
if self.save_prediction_only:
return
gt_boxes = inputs['gt_bbox']
gt_labels = inputs['gt_class']
difficults = inputs['difficult'] if not self.evaluate_difficult \
else None
if 'scale_factor' in inputs:
scale_factor = inputs['scale_factor'].numpy() if isinstance(
inputs['scale_factor'],
paddle.Tensor) else inputs['scale_factor']
else:
scale_factor = np.ones((gt_boxes.shape[0], 2)).astype('float32')
bbox_idx = 0
for i in range(len(gt_boxes)):
gt_box = gt_boxes[i].numpy() if isinstance(
gt_boxes[i], paddle.Tensor) else gt_boxes[i]
h, w = scale_factor[i]
gt_box = gt_box / np.array([w, h, w, h])
gt_label = gt_labels[i].numpy() if isinstance(
gt_labels[i], paddle.Tensor) else gt_labels[i]
if difficults is not None:
difficult = difficults[i].numpy() if isinstance(
difficults[i], paddle.Tensor) else difficults[i]
else:
difficult = None
bbox_num = bbox_lengths[i]
bbox = bboxes[bbox_idx:bbox_idx + bbox_num]
score = scores[bbox_idx:bbox_idx + bbox_num]
label = labels[bbox_idx:bbox_idx + bbox_num]
gt_box, gt_label, difficult = prune_zero_padding(gt_box, gt_label,
difficult)
self.detection_map.update(bbox, score, label, gt_box, gt_label,
difficult)
bbox_idx += bbox_num
def accumulate(self):
output = "bbox.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results, f)
logger.info('The bbox result is saved to bbox.json.')
if self.save_prediction_only:
return
logger.info("Accumulating evaluatation results...")
self.detection_map.accumulate()
def log(self):
map_stat = 100. * self.detection_map.get_map()
logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh,
self.map_type, map_stat))
def get_results(self):
return {'bbox': [self.detection_map.get_map()]}
class WiderFaceMetric(Metric):
def __init__(self, image_dir, anno_file, multi_scale=True):
self.image_dir = image_dir
self.anno_file = anno_file
self.multi_scale = multi_scale
self.clsid2catid, self.catid2name = get_categories('widerface')
def update(self, model):
face_eval_run(
model,
self.image_dir,
self.anno_file,
pred_dir='output/pred',
eval_mode='widerface',
multi_scale=self.multi_scale)
class RBoxMetric(Metric):
def __init__(self, anno_file, **kwargs):
self.anno_file = anno_file
self.clsid2catid, self.catid2name = get_categories('RBOX', anno_file)
self.catid2clsid = {v: k for k, v in self.clsid2catid.items()}
self.classwise = kwargs.get('classwise', False)
self.output_eval = kwargs.get('output_eval', None)
self.save_prediction_only = kwargs.get('save_prediction_only', False)
self.overlap_thresh = kwargs.get('overlap_thresh', 0.5)
self.map_type = kwargs.get('map_type', '11point')
self.evaluate_difficult = kwargs.get('evaluate_difficult', False)
self.imid2path = kwargs.get('imid2path', None)
class_num = len(self.catid2name)
self.detection_map = DetectionMAP(
class_num=class_num,
overlap_thresh=self.overlap_thresh,
map_type=self.map_type,
is_bbox_normalized=False,
evaluate_difficult=self.evaluate_difficult,
catid2name=self.catid2name,
classwise=self.classwise)
self.reset()
def reset(self):
self.results = []
self.detection_map.reset()
def update(self, inputs, outputs):
outs = {}
# outputs Tensor -> numpy.ndarray
for k, v in outputs.items():
outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v
im_id = inputs['im_id']
im_id = im_id.numpy() if isinstance(im_id, paddle.Tensor) else im_id
outs['im_id'] = im_id
infer_results = get_infer_results(outs, self.clsid2catid)
infer_results = infer_results['bbox'] if 'bbox' in infer_results else []
self.results += infer_results
if self.save_prediction_only:
return
gt_boxes = inputs['gt_poly']
gt_labels = inputs['gt_class']
if 'scale_factor' in inputs:
scale_factor = inputs['scale_factor'].numpy() if isinstance(
inputs['scale_factor'],
paddle.Tensor) else inputs['scale_factor']
else:
scale_factor = np.ones((gt_boxes.shape[0], 2)).astype('float32')
for i in range(len(gt_boxes)):
gt_box = gt_boxes[i].numpy() if isinstance(
gt_boxes[i], paddle.Tensor) else gt_boxes[i]
h, w = scale_factor[i]
gt_box = gt_box / np.array([w, h, w, h, w, h, w, h])
gt_label = gt_labels[i].numpy() if isinstance(
gt_labels[i], paddle.Tensor) else gt_labels[i]
gt_box, gt_label, _ = prune_zero_padding(gt_box, gt_label)
bbox = [
res['bbox'] for res in infer_results
if int(res['image_id']) == int(im_id[i])
]
score = [
res['score'] for res in infer_results
if int(res['image_id']) == int(im_id[i])
]
label = [
self.catid2clsid[int(res['category_id'])]
for res in infer_results
if int(res['image_id']) == int(im_id[i])
]
self.detection_map.update(bbox, score, label, gt_box, gt_label)
def save_results(self, results, output_dir, imid2path):
if imid2path:
data_dicts = defaultdict(list)
for result in results:
image_id = result['image_id']
data_dicts[image_id].append(result)
for image_id, image_path in imid2path.items():
basename = os.path.splitext(os.path.split(image_path)[-1])[0]
output = os.path.join(output_dir, "{}.txt".format(basename))
dets = data_dicts.get(image_id, [])
with open(output, 'w') as f:
for det in dets:
catid, bbox, score = det['category_id'], det[
'bbox'], det['score']
bbox_pred = '{} {} '.format(self.catid2name[catid],
score) + ' '.join(
[str(e) for e in bbox])
f.write(bbox_pred + '\n')
logger.info('The bbox result is saved to {}.'.format(output_dir))
else:
output = os.path.join(output_dir, "bbox.json")
with open(output, 'w') as f:
json.dump(results, f)
logger.info('The bbox result is saved to {}.'.format(output))
def accumulate(self):
if self.output_eval:
self.save_results(self.results, self.output_eval, self.imid2path)
if not self.save_prediction_only:
logger.info("Accumulating evaluatation results...")
self.detection_map.accumulate()
def log(self):
map_stat = 100. * self.detection_map.get_map()
logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh,
self.map_type, map_stat))
def get_results(self):
return {'bbox': [self.detection_map.get_map()]}
class SNIPERCOCOMetric(COCOMetric):
def __init__(self, anno_file, **kwargs):
super(SNIPERCOCOMetric, self).__init__(anno_file, **kwargs)
self.dataset = kwargs["dataset"]
self.chip_results = []
def reset(self):
# only bbox and mask evaluation support currently
self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []}
self.eval_results = {}
self.chip_results = []
def update(self, inputs, outputs):
outs = {}
# outputs Tensor -> numpy.ndarray
for k, v in outputs.items():
outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v
im_id = inputs['im_id']
outs['im_id'] = im_id.numpy() if isinstance(im_id,
paddle.Tensor) else im_id
self.chip_results.append(outs)
def accumulate(self):
results = self.dataset.anno_cropper.aggregate_chips_detections(
self.chip_results)
for outs in results:
infer_results = get_infer_results(
outs, self.clsid2catid, bias=self.bias)
self.results['bbox'] += infer_results[
'bbox'] if 'bbox' in infer_results else []
super(SNIPERCOCOMetric, self).accumulate()

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,428 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is borrow from https://github.com/xingyizhou/CenterTrack/blob/master/src/tools/eval_kitti_track/munkres.py
"""
import sys
__all__ = ['Munkres', 'make_cost_matrix']
class Munkres:
"""
Calculate the Munkres solution to the classical assignment problem.
See the module documentation for usage.
"""
def __init__(self):
"""Create a new instance"""
self.C = None
self.row_covered = []
self.col_covered = []
self.n = 0
self.Z0_r = 0
self.Z0_c = 0
self.marked = None
self.path = None
def make_cost_matrix(profit_matrix, inversion_function):
"""
**DEPRECATED**
Please use the module function ``make_cost_matrix()``.
"""
import munkres
return munkres.make_cost_matrix(profit_matrix, inversion_function)
make_cost_matrix = staticmethod(make_cost_matrix)
def pad_matrix(self, matrix, pad_value=0):
"""
Pad a possibly non-square matrix to make it square.
:Parameters:
matrix : list of lists
matrix to pad
pad_value : int
value to use to pad the matrix
:rtype: list of lists
:return: a new, possibly padded, matrix
"""
max_columns = 0
total_rows = len(matrix)
for row in matrix:
max_columns = max(max_columns, len(row))
total_rows = max(max_columns, total_rows)
new_matrix = []
for row in matrix:
row_len = len(row)
new_row = row[:]
if total_rows > row_len:
# Row too short. Pad it.
new_row += [0] * (total_rows - row_len)
new_matrix += [new_row]
while len(new_matrix) < total_rows:
new_matrix += [[0] * total_rows]
return new_matrix
def compute(self, cost_matrix):
"""
Compute the indexes for the lowest-cost pairings between rows and
columns in the database. Returns a list of (row, column) tuples
that can be used to traverse the matrix.
:Parameters:
cost_matrix : list of lists
The cost matrix. If this cost matrix is not square, it
will be padded with zeros, via a call to ``pad_matrix()``.
(This method does *not* modify the caller's matrix. It
operates on a copy of the matrix.)
**WARNING**: This code handles square and rectangular
matrices. It does *not* handle irregular matrices.
:rtype: list
:return: A list of ``(row, column)`` tuples that describe the lowest
cost path through the matrix
"""
self.C = self.pad_matrix(cost_matrix)
self.n = len(self.C)
self.original_length = len(cost_matrix)
self.original_width = len(cost_matrix[0])
self.row_covered = [False for i in range(self.n)]
self.col_covered = [False for i in range(self.n)]
self.Z0_r = 0
self.Z0_c = 0
self.path = self.__make_matrix(self.n * 2, 0)
self.marked = self.__make_matrix(self.n, 0)
done = False
step = 1
steps = {
1: self.__step1,
2: self.__step2,
3: self.__step3,
4: self.__step4,
5: self.__step5,
6: self.__step6
}
while not done:
try:
func = steps[step]
step = func()
except KeyError:
done = True
# Look for the starred columns
results = []
for i in range(self.original_length):
for j in range(self.original_width):
if self.marked[i][j] == 1:
results += [(i, j)]
return results
def __copy_matrix(self, matrix):
"""Return an exact copy of the supplied matrix"""
return copy.deepcopy(matrix)
def __make_matrix(self, n, val):
"""Create an *n*x*n* matrix, populating it with the specific value."""
matrix = []
for i in range(n):
matrix += [[val for j in range(n)]]
return matrix
def __step1(self):
"""
For each row of the matrix, find the smallest element and
subtract it from every element in its row. Go to Step 2.
"""
C = self.C
n = self.n
for i in range(n):
minval = min(self.C[i])
# Find the minimum value for this row and subtract that minimum
# from every element in the row.
for j in range(n):
self.C[i][j] -= minval
return 2
def __step2(self):
"""
Find a zero (Z) in the resulting matrix. If there is no starred
zero in its row or column, star Z. Repeat for each element in the
matrix. Go to Step 3.
"""
n = self.n
for i in range(n):
for j in range(n):
if (self.C[i][j] == 0) and \
(not self.col_covered[j]) and \
(not self.row_covered[i]):
self.marked[i][j] = 1
self.col_covered[j] = True
self.row_covered[i] = True
self.__clear_covers()
return 3
def __step3(self):
"""
Cover each column containing a starred zero. If K columns are
covered, the starred zeros describe a complete set of unique
assignments. In this case, Go to DONE, otherwise, Go to Step 4.
"""
n = self.n
count = 0
for i in range(n):
for j in range(n):
if self.marked[i][j] == 1:
self.col_covered[j] = True
count += 1
if count >= n:
step = 7 # done
else:
step = 4
return step
def __step4(self):
"""
Find a noncovered zero and prime it. If there is no starred zero
in the row containing this primed zero, Go to Step 5. Otherwise,
cover this row and uncover the column containing the starred
zero. Continue in this manner until there are no uncovered zeros
left. Save the smallest uncovered value and Go to Step 6.
"""
step = 0
done = False
row = -1
col = -1
star_col = -1
while not done:
(row, col) = self.__find_a_zero()
if row < 0:
done = True
step = 6
else:
self.marked[row][col] = 2
star_col = self.__find_star_in_row(row)
if star_col >= 0:
col = star_col
self.row_covered[row] = True
self.col_covered[col] = False
else:
done = True
self.Z0_r = row
self.Z0_c = col
step = 5
return step
def __step5(self):
"""
Construct a series of alternating primed and starred zeros as
follows. Let Z0 represent the uncovered primed zero found in Step 4.
Let Z1 denote the starred zero in the column of Z0 (if any).
Let Z2 denote the primed zero in the row of Z1 (there will always
be one). Continue until the series terminates at a primed zero
that has no starred zero in its column. Unstar each starred zero
of the series, star each primed zero of the series, erase all
primes and uncover every line in the matrix. Return to Step 3
"""
count = 0
path = self.path
path[count][0] = self.Z0_r
path[count][1] = self.Z0_c
done = False
while not done:
row = self.__find_star_in_col(path[count][1])
if row >= 0:
count += 1
path[count][0] = row
path[count][1] = path[count - 1][1]
else:
done = True
if not done:
col = self.__find_prime_in_row(path[count][0])
count += 1
path[count][0] = path[count - 1][0]
path[count][1] = col
self.__convert_path(path, count)
self.__clear_covers()
self.__erase_primes()
return 3
def __step6(self):
"""
Add the value found in Step 4 to every element of each covered
row, and subtract it from every element of each uncovered column.
Return to Step 4 without altering any stars, primes, or covered
lines.
"""
minval = self.__find_smallest()
for i in range(self.n):
for j in range(self.n):
if self.row_covered[i]:
self.C[i][j] += minval
if not self.col_covered[j]:
self.C[i][j] -= minval
return 4
def __find_smallest(self):
"""Find the smallest uncovered value in the matrix."""
minval = 2e9 # sys.maxint
for i in range(self.n):
for j in range(self.n):
if (not self.row_covered[i]) and (not self.col_covered[j]):
if minval > self.C[i][j]:
minval = self.C[i][j]
return minval
def __find_a_zero(self):
"""Find the first uncovered element with value 0"""
row = -1
col = -1
i = 0
n = self.n
done = False
while not done:
j = 0
while True:
if (self.C[i][j] == 0) and \
(not self.row_covered[i]) and \
(not self.col_covered[j]):
row = i
col = j
done = True
j += 1
if j >= n:
break
i += 1
if i >= n:
done = True
return (row, col)
def __find_star_in_row(self, row):
"""
Find the first starred element in the specified row. Returns
the column index, or -1 if no starred element was found.
"""
col = -1
for j in range(self.n):
if self.marked[row][j] == 1:
col = j
break
return col
def __find_star_in_col(self, col):
"""
Find the first starred element in the specified row. Returns
the row index, or -1 if no starred element was found.
"""
row = -1
for i in range(self.n):
if self.marked[i][col] == 1:
row = i
break
return row
def __find_prime_in_row(self, row):
"""
Find the first prime element in the specified row. Returns
the column index, or -1 if no starred element was found.
"""
col = -1
for j in range(self.n):
if self.marked[row][j] == 2:
col = j
break
return col
def __convert_path(self, path, count):
for i in range(count + 1):
if self.marked[path[i][0]][path[i][1]] == 1:
self.marked[path[i][0]][path[i][1]] = 0
else:
self.marked[path[i][0]][path[i][1]] = 1
def __clear_covers(self):
"""Clear all covered matrix cells"""
for i in range(self.n):
self.row_covered[i] = False
self.col_covered[i] = False
def __erase_primes(self):
"""Erase all prime markings"""
for i in range(self.n):
for j in range(self.n):
if self.marked[i][j] == 2:
self.marked[i][j] = 0
def make_cost_matrix(profit_matrix, inversion_function):
"""
Create a cost matrix from a profit matrix by calling
'inversion_function' to invert each value. The inversion
function must take one numeric argument (of any type) and return
another numeric argument which is presumed to be the cost inverse
of the original profit.
This is a static method. Call it like this:
.. python::
cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func)
For example:
.. python::
cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxint - x)
:Parameters:
profit_matrix : list of lists
The matrix to convert from a profit to a cost matrix
inversion_function : function
The function to use to invert each entry in the profit matrix
:rtype: list of lists
:return: The converted matrix
"""
cost_matrix = []
for row in profit_matrix:
cost_matrix.append([inversion_function(value) for value in row])
return cost_matrix

View File

@@ -0,0 +1,200 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle.distributed import ParallelEnv
import os
import json
from collections import defaultdict, OrderedDict
import numpy as np
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['Pose3DEval']
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def mean_per_joint_position_error(pred, gt, has_3d_joints):
"""
Compute mPJPE
"""
gt = gt[has_3d_joints == 1]
gt = gt[:, :, :3]
pred = pred[has_3d_joints == 1]
with paddle.no_grad():
gt_pelvis = (gt[:, 2, :] + gt[:, 3, :]) / 2
gt = gt - gt_pelvis[:, None, :]
pred_pelvis = (pred[:, 2, :] + pred[:, 3, :]) / 2
pred = pred - pred_pelvis[:, None, :]
error = paddle.sqrt(((pred - gt)**2).sum(axis=-1)).mean(axis=-1).numpy()
return error
def compute_similarity_transform(S1, S2):
"""Computes a similarity transform (sR, t) that takes
a set of 3D points S1 (3 x N) closest to a set of 3D points S2,
where R is an 3x3 rotation matrix, t 3x1 translation, s scale.
i.e. solves the orthogonal Procrutes problem.
"""
transposed = False
if S1.shape[0] != 3 and S1.shape[0] != 2:
S1 = S1.T
S2 = S2.T
transposed = True
assert (S2.shape[1] == S1.shape[1])
# 1. Remove mean.
mu1 = S1.mean(axis=1, keepdims=True)
mu2 = S2.mean(axis=1, keepdims=True)
X1 = S1 - mu1
X2 = S2 - mu2
# 2. Compute variance of X1 used for scale.
var1 = np.sum(X1**2)
# 3. The outer product of X1 and X2.
K = X1.dot(X2.T)
# 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are
# singular vectors of K.
U, s, Vh = np.linalg.svd(K)
V = Vh.T
# Construct Z that fixes the orientation of R to get det(R)=1.
Z = np.eye(U.shape[0])
Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T)))
# Construct R.
R = V.dot(Z.dot(U.T))
# 5. Recover scale.
scale = np.trace(R.dot(K)) / var1
# 6. Recover translation.
t = mu2 - scale * (R.dot(mu1))
# 7. Error:
S1_hat = scale * R.dot(S1) + t
if transposed:
S1_hat = S1_hat.T
return S1_hat
def compute_similarity_transform_batch(S1, S2):
"""Batched version of compute_similarity_transform."""
S1_hat = np.zeros_like(S1)
for i in range(S1.shape[0]):
S1_hat[i] = compute_similarity_transform(S1[i], S2[i])
return S1_hat
def reconstruction_error(S1, S2, reduction='mean'):
"""Do Procrustes alignment and compute reconstruction error."""
S1_hat = compute_similarity_transform_batch(S1, S2)
re = np.sqrt(((S1_hat - S2)**2).sum(axis=-1)).mean(axis=-1)
if reduction == 'mean':
re = re.mean()
elif reduction == 'sum':
re = re.sum()
return re
def all_gather(data):
if paddle.distributed.get_world_size() == 1:
return data
vlist = []
paddle.distributed.all_gather(vlist, data)
data = paddle.concat(vlist, 0)
return data
class Pose3DEval(object):
def __init__(self, output_eval, save_prediction_only=False):
super(Pose3DEval, self).__init__()
self.output_eval = output_eval
self.res_file = os.path.join(output_eval, "pose3d_results.json")
self.save_prediction_only = save_prediction_only
self.reset()
def reset(self):
self.PAmPJPE = AverageMeter()
self.mPJPE = AverageMeter()
self.eval_results = {}
def get_human36m_joints(self, input):
J24_TO_J14 = paddle.to_tensor(
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18])
J24_TO_J17 = paddle.to_tensor(
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19])
return paddle.index_select(input, J24_TO_J14, axis=1)
def update(self, inputs, outputs):
gt_3d_joints = all_gather(inputs['joints_3d'].cuda(ParallelEnv()
.local_rank))
has_3d_joints = all_gather(inputs['has_3d_joints'].cuda(ParallelEnv()
.local_rank))
pred_3d_joints = all_gather(outputs['pose3d'])
if gt_3d_joints.shape[1] == 24:
gt_3d_joints = self.get_human36m_joints(gt_3d_joints)
if pred_3d_joints.shape[1] == 24:
pred_3d_joints = self.get_human36m_joints(pred_3d_joints)
mPJPE_val = mean_per_joint_position_error(pred_3d_joints, gt_3d_joints,
has_3d_joints).mean()
PAmPJPE_val = reconstruction_error(
pred_3d_joints.numpy(),
gt_3d_joints[:, :, :3].numpy(),
reduction=None).mean()
count = int(np.sum(has_3d_joints.numpy()))
self.PAmPJPE.update(PAmPJPE_val * 1000., count)
self.mPJPE.update(mPJPE_val * 1000., count)
def accumulate(self):
if self.save_prediction_only:
logger.info(f'The pose3d result is saved to {self.res_file} '
'and do not evaluate the model.')
return
self.eval_results['pose3d'] = [-self.mPJPE.avg, -self.PAmPJPE.avg]
def log(self):
if self.save_prediction_only:
return
stats_names = ['mPJPE', 'PAmPJPE']
num_values = len(stats_names)
print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |')
print('|---' * (num_values + 1) + '|')
print(' '.join([
'| {:.3f}'.format(abs(value))
for value in self.eval_results['pose3d']
]) + ' |')
def get_results(self):
return self.eval_results

View File

@@ -0,0 +1,391 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import cv2
import numpy as np
from collections import OrderedDict
import paddle
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['face_eval_run', 'lmk2out']
def face_eval_run(model,
image_dir,
gt_file,
pred_dir='output/pred',
eval_mode='widerface',
multi_scale=False):
# load ground truth files
with open(gt_file, 'r') as f:
gt_lines = f.readlines()
imid2path = []
pos_gt = 0
while pos_gt < len(gt_lines):
name_gt = gt_lines[pos_gt].strip('\n\t').split()[0]
imid2path.append(name_gt)
pos_gt += 1
n_gt = int(gt_lines[pos_gt].strip('\n\t').split()[0])
pos_gt += 1 + n_gt
logger.info('The ground truth file load {} images'.format(len(imid2path)))
dets_dist = OrderedDict()
for iter_id, im_path in enumerate(imid2path):
image_path = os.path.join(image_dir, im_path)
if eval_mode == 'fddb':
image_path += '.jpg'
assert os.path.exists(image_path)
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if multi_scale:
shrink, max_shrink = get_shrink(image.shape[0], image.shape[1])
det0 = detect_face(model, image, shrink)
det1 = flip_test(model, image, shrink)
[det2, det3] = multi_scale_test(model, image, max_shrink)
det4 = multi_scale_test_pyramid(model, image, max_shrink)
det = np.row_stack((det0, det1, det2, det3, det4))
dets = bbox_vote(det)
else:
dets = detect_face(model, image, 1)
if eval_mode == 'widerface':
save_widerface_bboxes(image_path, dets, pred_dir)
else:
dets_dist[im_path] = dets
if iter_id % 100 == 0:
logger.info('Test iter {}'.format(iter_id))
if eval_mode == 'fddb':
save_fddb_bboxes(dets_dist, pred_dir)
logger.info("Finish evaluation.")
def detect_face(model, image, shrink):
image_shape = [image.shape[0], image.shape[1]]
if shrink != 1:
h, w = int(image_shape[0] * shrink), int(image_shape[1] * shrink)
image = cv2.resize(image, (w, h))
image_shape = [h, w]
img = face_img_process(image)
image_shape = np.asarray([image_shape])
scale_factor = np.asarray([[shrink, shrink]])
data = {
"image": paddle.to_tensor(
img, dtype='float32'),
"im_shape": paddle.to_tensor(
image_shape, dtype='float32'),
"scale_factor": paddle.to_tensor(
scale_factor, dtype='float32')
}
model.eval()
detection = model(data)
detection = detection['bbox'].numpy()
# layout: xmin, ymin, xmax. ymax, score
if np.prod(detection.shape) == 1:
logger.info("No face detected")
return np.array([[0, 0, 0, 0, 0]])
det_conf = detection[:, 1]
det_xmin = detection[:, 2]
det_ymin = detection[:, 3]
det_xmax = detection[:, 4]
det_ymax = detection[:, 5]
det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf))
return det
def flip_test(model, image, shrink):
img = cv2.flip(image, 1)
det_f = detect_face(model, img, shrink)
det_t = np.zeros(det_f.shape)
img_width = image.shape[1]
det_t[:, 0] = img_width - det_f[:, 2]
det_t[:, 1] = det_f[:, 1]
det_t[:, 2] = img_width - det_f[:, 0]
det_t[:, 3] = det_f[:, 3]
det_t[:, 4] = det_f[:, 4]
return det_t
def multi_scale_test(model, image, max_shrink):
# Shrink detecting is only used to detect big faces
st = 0.5 if max_shrink >= 0.75 else 0.5 * max_shrink
det_s = detect_face(model, image, st)
index = np.where(
np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1)
> 30)[0]
det_s = det_s[index, :]
# Enlarge one times
bt = min(2, max_shrink) if max_shrink > 1 else (st + max_shrink) / 2
det_b = detect_face(model, image, bt)
# Enlarge small image x times for small faces
if max_shrink > 2:
bt *= 2
while bt < max_shrink:
det_b = np.row_stack((det_b, detect_face(model, image, bt)))
bt *= 2
det_b = np.row_stack((det_b, detect_face(model, image, max_shrink)))
# Enlarged images are only used to detect small faces.
if bt > 1:
index = np.where(
np.minimum(det_b[:, 2] - det_b[:, 0] + 1,
det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
det_b = det_b[index, :]
# Shrinked images are only used to detect big faces.
else:
index = np.where(
np.maximum(det_b[:, 2] - det_b[:, 0] + 1,
det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
det_b = det_b[index, :]
return det_s, det_b
def multi_scale_test_pyramid(model, image, max_shrink):
# Use image pyramids to detect faces
det_b = detect_face(model, image, 0.25)
index = np.where(
np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1)
> 30)[0]
det_b = det_b[index, :]
st = [0.75, 1.25, 1.5, 1.75]
for i in range(len(st)):
if st[i] <= max_shrink:
det_temp = detect_face(model, image, st[i])
# Enlarged images are only used to detect small faces.
if st[i] > 1:
index = np.where(
np.minimum(det_temp[:, 2] - det_temp[:, 0] + 1,
det_temp[:, 3] - det_temp[:, 1] + 1) < 100)[0]
det_temp = det_temp[index, :]
# Shrinked images are only used to detect big faces.
else:
index = np.where(
np.maximum(det_temp[:, 2] - det_temp[:, 0] + 1,
det_temp[:, 3] - det_temp[:, 1] + 1) > 30)[0]
det_temp = det_temp[index, :]
det_b = np.row_stack((det_b, det_temp))
return det_b
def to_chw(image):
"""
Transpose image from HWC to CHW.
Args:
image (np.array): an image with HWC layout.
"""
# HWC to CHW
if len(image.shape) == 3:
image = np.swapaxes(image, 1, 2)
image = np.swapaxes(image, 1, 0)
return image
def face_img_process(image,
mean=[104., 117., 123.],
std=[127.502231, 127.502231, 127.502231]):
img = np.array(image)
img = to_chw(img)
img = img.astype('float32')
img -= np.array(mean)[:, np.newaxis, np.newaxis].astype('float32')
img /= np.array(std)[:, np.newaxis, np.newaxis].astype('float32')
img = [img]
img = np.array(img)
return img
def get_shrink(height, width):
"""
Args:
height (int): image height.
width (int): image width.
"""
# avoid out of memory
max_shrink_v1 = (0x7fffffff / 577.0 / (height * width))**0.5
max_shrink_v2 = ((678 * 1024 * 2.0 * 2.0) / (height * width))**0.5
def get_round(x, loc):
str_x = str(x)
if '.' in str_x:
str_before, str_after = str_x.split('.')
len_after = len(str_after)
if len_after >= 3:
str_final = str_before + '.' + str_after[0:loc]
return float(str_final)
else:
return x
max_shrink = get_round(min(max_shrink_v1, max_shrink_v2), 2) - 0.3
if max_shrink >= 1.5 and max_shrink < 2:
max_shrink = max_shrink - 0.1
elif max_shrink >= 2 and max_shrink < 3:
max_shrink = max_shrink - 0.2
elif max_shrink >= 3 and max_shrink < 4:
max_shrink = max_shrink - 0.3
elif max_shrink >= 4 and max_shrink < 5:
max_shrink = max_shrink - 0.4
elif max_shrink >= 5:
max_shrink = max_shrink - 0.5
elif max_shrink <= 0.1:
max_shrink = 0.1
shrink = max_shrink if max_shrink < 1 else 1
return shrink, max_shrink
def bbox_vote(det):
order = det[:, 4].ravel().argsort()[::-1]
det = det[order, :]
if det.shape[0] == 0:
dets = np.array([[10, 10, 20, 20, 0.002]])
det = np.empty(shape=[0, 5])
while det.shape[0] > 0:
# IOU
area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
xx1 = np.maximum(det[0, 0], det[:, 0])
yy1 = np.maximum(det[0, 1], det[:, 1])
xx2 = np.minimum(det[0, 2], det[:, 2])
yy2 = np.minimum(det[0, 3], det[:, 3])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
o = inter / (area[0] + area[:] - inter)
# nms
merge_index = np.where(o >= 0.3)[0]
det_accu = det[merge_index, :]
det = np.delete(det, merge_index, 0)
if merge_index.shape[0] <= 1:
if det.shape[0] == 0:
try:
dets = np.row_stack((dets, det_accu))
except:
dets = det_accu
continue
det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
max_score = np.max(det_accu[:, 4])
det_accu_sum = np.zeros((1, 5))
det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4],
axis=0) / np.sum(det_accu[:, -1:])
det_accu_sum[:, 4] = max_score
try:
dets = np.row_stack((dets, det_accu_sum))
except:
dets = det_accu_sum
dets = dets[0:750, :]
keep_index = np.where(dets[:, 4] >= 0.01)[0]
dets = dets[keep_index, :]
return dets
def save_widerface_bboxes(image_path, bboxes_scores, output_dir):
image_name = image_path.split('/')[-1]
image_class = image_path.split('/')[-2]
odir = os.path.join(output_dir, image_class)
if not os.path.exists(odir):
os.makedirs(odir)
ofname = os.path.join(odir, '%s.txt' % (image_name[:-4]))
f = open(ofname, 'w')
f.write('{:s}\n'.format(image_class + '/' + image_name))
f.write('{:d}\n'.format(bboxes_scores.shape[0]))
for box_score in bboxes_scores:
xmin, ymin, xmax, ymax, score = box_score
f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(xmin, ymin, (
xmax - xmin + 1), (ymax - ymin + 1), score))
f.close()
logger.info("The predicted result is saved as {}".format(ofname))
def save_fddb_bboxes(bboxes_scores,
output_dir,
output_fname='pred_fddb_res.txt'):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
predict_file = os.path.join(output_dir, output_fname)
f = open(predict_file, 'w')
for image_path, dets in bboxes_scores.iteritems():
f.write('{:s}\n'.format(image_path))
f.write('{:d}\n'.format(dets.shape[0]))
for box_score in dets:
xmin, ymin, xmax, ymax, score = box_score
width, height = xmax - xmin, ymax - ymin
f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'
.format(xmin, ymin, width, height, score))
logger.info("The predicted result is saved as {}".format(predict_file))
return predict_file
def lmk2out(results, is_bbox_normalized=False):
"""
Args:
results: request a dict, should include: `landmark`, `im_id`,
if is_bbox_normalized=True, also need `im_shape`.
is_bbox_normalized: whether or not landmark is normalized.
"""
xywh_res = []
for t in results:
bboxes = t['bbox'][0]
lengths = t['bbox'][1][0]
im_ids = np.array(t['im_id'][0]).flatten()
if bboxes.shape == (1, 1) or bboxes is None:
continue
face_index = t['face_index'][0]
prior_box = t['prior_boxes'][0]
predict_lmk = t['landmark'][0]
prior = np.reshape(prior_box, (-1, 4))
predictlmk = np.reshape(predict_lmk, (-1, 10))
k = 0
for a in range(len(lengths)):
num = lengths[a]
im_id = int(im_ids[a])
for i in range(num):
score = bboxes[k][1]
theindex = face_index[i][0]
me_prior = prior[theindex, :]
lmk_pred = predictlmk[theindex, :]
prior_w = me_prior[2] - me_prior[0]
prior_h = me_prior[3] - me_prior[1]
prior_w_center = (me_prior[2] + me_prior[0]) / 2
prior_h_center = (me_prior[3] + me_prior[1]) / 2
lmk_decode = np.zeros((10))
for j in [0, 2, 4, 6, 8]:
lmk_decode[j] = lmk_pred[j] * 0.1 * prior_w + prior_w_center
for j in [1, 3, 5, 7, 9]:
lmk_decode[j] = lmk_pred[j] * 0.1 * prior_h + prior_h_center
im_shape = t['im_shape'][0][a].tolist()
image_h, image_w = int(im_shape[0]), int(im_shape[1])
if is_bbox_normalized:
lmk_decode = lmk_decode * np.array([
image_w, image_h, image_w, image_h, image_w, image_h,
image_w, image_h, image_w, image_h
])
lmk_res = {
'image_id': im_id,
'landmark': lmk_decode,
'score': score,
}
xywh_res.append(lmk_res)
k += 1
return xywh_res