更换文档检测模型
This commit is contained in:
84
paddle_detection/ppdet/model_zoo/model_zoo.py
Normal file
84
paddle_detection/ppdet/model_zoo/model_zoo.py
Normal file
@@ -0,0 +1,84 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os.path as osp
|
||||
import pkg_resources
|
||||
|
||||
try:
|
||||
from collections.abc import Sequence
|
||||
except:
|
||||
from collections import Sequence
|
||||
|
||||
from ppdet.core.workspace import load_config, create
|
||||
from ppdet.utils.checkpoint import load_weight
|
||||
from ppdet.utils.download import get_config_path
|
||||
|
||||
from ppdet.utils.logger import setup_logger
|
||||
logger = setup_logger(__name__)
|
||||
|
||||
__all__ = [
|
||||
'list_model', 'get_config_file', 'get_weights_url', 'get_model',
|
||||
'MODEL_ZOO_FILENAME'
|
||||
]
|
||||
|
||||
MODEL_ZOO_FILENAME = 'MODEL_ZOO'
|
||||
|
||||
|
||||
def list_model(filters=[]):
|
||||
model_zoo_file = pkg_resources.resource_filename('ppdet.model_zoo',
|
||||
MODEL_ZOO_FILENAME)
|
||||
with open(model_zoo_file) as f:
|
||||
model_names = f.read().splitlines()
|
||||
|
||||
# filter model_name
|
||||
def filt(name):
|
||||
for f in filters:
|
||||
if name.find(f) < 0:
|
||||
return False
|
||||
return True
|
||||
|
||||
if isinstance(filters, str) or not isinstance(filters, Sequence):
|
||||
filters = [filters]
|
||||
model_names = [name for name in model_names if filt(name)]
|
||||
if len(model_names) == 0 and len(filters) > 0:
|
||||
raise ValueError("no model found, please check filters seeting, "
|
||||
"filters can be set as following kinds:\n"
|
||||
"\tDataset: coco, voc ...\n"
|
||||
"\tArchitecture: yolo, rcnn, ssd ...\n"
|
||||
"\tBackbone: resnet, vgg, darknet ...\n")
|
||||
|
||||
model_str = "Available Models:\n"
|
||||
for model_name in model_names:
|
||||
model_str += "\t{}\n".format(model_name)
|
||||
logger.info(model_str)
|
||||
|
||||
|
||||
# models and configs save on bcebos under dygraph directory
|
||||
def get_config_file(model_name):
|
||||
return get_config_path("ppdet://configs/{}.yml".format(model_name))
|
||||
|
||||
|
||||
def get_weights_url(model_name):
|
||||
return "ppdet://models/{}.pdparams".format(osp.split(model_name)[-1])
|
||||
|
||||
|
||||
def get_model(model_name, pretrained=True):
|
||||
cfg_file = get_config_file(model_name)
|
||||
cfg = load_config(cfg_file)
|
||||
model = create(cfg.architecture)
|
||||
|
||||
if pretrained:
|
||||
load_weight(model, get_weights_url(model_name))
|
||||
|
||||
return model
|
||||
Reference in New Issue
Block a user