更换文档检测模型
This commit is contained in:
167
paddle_detection/ppdet/modeling/architectures/faster_rcnn.py
Normal file
167
paddle_detection/ppdet/modeling/architectures/faster_rcnn.py
Normal file
@@ -0,0 +1,167 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
from ppdet.core.workspace import register, create
|
||||
from .meta_arch import BaseArch
|
||||
import numpy as np
|
||||
|
||||
__all__ = ['FasterRCNN']
|
||||
|
||||
|
||||
@register
|
||||
class FasterRCNN(BaseArch):
|
||||
"""
|
||||
Faster R-CNN network, see https://arxiv.org/abs/1506.01497
|
||||
|
||||
Args:
|
||||
backbone (object): backbone instance
|
||||
rpn_head (object): `RPNHead` instance
|
||||
bbox_head (object): `BBoxHead` instance
|
||||
bbox_post_process (object): `BBoxPostProcess` instance
|
||||
neck (object): 'FPN' instance
|
||||
"""
|
||||
__category__ = 'architecture'
|
||||
__inject__ = ['bbox_post_process']
|
||||
|
||||
def __init__(self,
|
||||
backbone,
|
||||
rpn_head,
|
||||
bbox_head,
|
||||
bbox_post_process,
|
||||
neck=None):
|
||||
super(FasterRCNN, self).__init__()
|
||||
self.backbone = backbone
|
||||
self.neck = neck
|
||||
self.rpn_head = rpn_head
|
||||
self.bbox_head = bbox_head
|
||||
self.bbox_post_process = bbox_post_process
|
||||
|
||||
def init_cot_head(self, relationship):
|
||||
self.bbox_head.init_cot_head(relationship)
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg, *args, **kwargs):
|
||||
backbone = create(cfg['backbone'])
|
||||
kwargs = {'input_shape': backbone.out_shape}
|
||||
neck = cfg['neck'] and create(cfg['neck'], **kwargs)
|
||||
|
||||
out_shape = neck and neck.out_shape or backbone.out_shape
|
||||
kwargs = {'input_shape': out_shape}
|
||||
rpn_head = create(cfg['rpn_head'], **kwargs)
|
||||
bbox_head = create(cfg['bbox_head'], **kwargs)
|
||||
return {
|
||||
'backbone': backbone,
|
||||
'neck': neck,
|
||||
"rpn_head": rpn_head,
|
||||
"bbox_head": bbox_head,
|
||||
}
|
||||
|
||||
def _forward(self):
|
||||
body_feats = self.backbone(self.inputs)
|
||||
if self.neck is not None:
|
||||
body_feats = self.neck(body_feats)
|
||||
if self.training:
|
||||
rois, rois_num, rpn_loss = self.rpn_head(body_feats, self.inputs)
|
||||
bbox_loss, _ = self.bbox_head(body_feats, rois, rois_num,
|
||||
self.inputs)
|
||||
return rpn_loss, bbox_loss
|
||||
else:
|
||||
rois, rois_num, _ = self.rpn_head(body_feats, self.inputs)
|
||||
preds, _ = self.bbox_head(body_feats, rois, rois_num, None)
|
||||
im_shape = self.inputs['im_shape']
|
||||
scale_factor = self.inputs['scale_factor']
|
||||
bbox, bbox_num, nms_keep_idx = self.bbox_post_process(
|
||||
preds, (rois, rois_num), im_shape, scale_factor)
|
||||
|
||||
# rescale the prediction back to origin image
|
||||
bboxes, bbox_pred, bbox_num = self.bbox_post_process.get_pred(
|
||||
bbox, bbox_num, im_shape, scale_factor)
|
||||
|
||||
if self.use_extra_data:
|
||||
extra_data = {
|
||||
} # record the bbox output before nms, such like scores and nms_keep_idx
|
||||
"""extra_data:{
|
||||
'scores': predict scores,
|
||||
'nms_keep_idx': bbox index before nms,
|
||||
}
|
||||
"""
|
||||
extra_data['scores'] = preds[1] # predict scores (probability)
|
||||
# Todo: get logits output
|
||||
extra_data[
|
||||
'nms_keep_idx'] = nms_keep_idx # bbox index before nms
|
||||
return bbox_pred, bbox_num, extra_data
|
||||
else:
|
||||
return bbox_pred, bbox_num
|
||||
|
||||
def get_loss(self, ):
|
||||
rpn_loss, bbox_loss = self._forward()
|
||||
loss = {}
|
||||
loss.update(rpn_loss)
|
||||
loss.update(bbox_loss)
|
||||
total_loss = paddle.add_n(list(loss.values()))
|
||||
loss.update({'loss': total_loss})
|
||||
return loss
|
||||
|
||||
def get_pred(self):
|
||||
if self.use_extra_data:
|
||||
bbox_pred, bbox_num, extra_data = self._forward()
|
||||
output = {
|
||||
'bbox': bbox_pred,
|
||||
'bbox_num': bbox_num,
|
||||
'extra_data': extra_data
|
||||
}
|
||||
else:
|
||||
bbox_pred, bbox_num = self._forward()
|
||||
output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
|
||||
return output
|
||||
|
||||
def target_bbox_forward(self, data):
|
||||
body_feats = self.backbone(data)
|
||||
if self.neck is not None:
|
||||
body_feats = self.neck(body_feats)
|
||||
rois = [roi for roi in data['gt_bbox']]
|
||||
rois_num = paddle.concat([paddle.shape(roi)[0:1] for roi in rois])
|
||||
|
||||
preds, _ = self.bbox_head(body_feats, rois, rois_num, None, cot=True)
|
||||
return preds
|
||||
|
||||
def relationship_learning(self, loader, num_classes_novel):
|
||||
print('computing relationship')
|
||||
train_labels_list = []
|
||||
label_list = []
|
||||
|
||||
for step_id, data in enumerate(loader):
|
||||
_, bbox_prob = self.target_bbox_forward(data)
|
||||
batch_size = data['im_id'].shape[0]
|
||||
for i in range(batch_size):
|
||||
num_bbox = data['gt_class'][i].shape[0]
|
||||
train_labels = data['gt_class'][i]
|
||||
train_labels_list.append(train_labels.numpy().squeeze(1))
|
||||
base_labels = bbox_prob.detach().numpy()[:, :-1]
|
||||
label_list.append(base_labels)
|
||||
|
||||
labels = np.concatenate(train_labels_list, 0)
|
||||
probabilities = np.concatenate(label_list, 0)
|
||||
N_t = np.max(labels) + 1
|
||||
conditional = []
|
||||
for i in range(N_t):
|
||||
this_class = probabilities[labels == i]
|
||||
average = np.mean(this_class, axis=0, keepdims=True)
|
||||
conditional.append(average)
|
||||
return np.concatenate(conditional)
|
||||
Reference in New Issue
Block a user