更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,222 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['FCOS', 'ARSL_FCOS']
@register
class FCOS(BaseArch):
"""
FCOS network, see https://arxiv.org/abs/1904.01355
Args:
backbone (object): backbone instance
neck (object): 'FPN' instance
fcos_head (object): 'FCOSHead' instance
ssod_loss (object): 'SSODFCOSLoss' instance, only used for semi-det(ssod) by DenseTeacher
"""
__category__ = 'architecture'
__inject__ = ['ssod_loss']
def __init__(self,
backbone='ResNet',
neck='FPN',
fcos_head='FCOSHead',
ssod_loss='SSODFCOSLoss'):
super(FCOS, self).__init__()
self.backbone = backbone
self.neck = neck
self.fcos_head = fcos_head
# for ssod, semi-det
self.is_teacher = False
self.ssod_loss = ssod_loss
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
fcos_head = create(cfg['fcos_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"fcos_head": fcos_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
fpn_feats = self.neck(body_feats)
self.is_teacher = self.inputs.get('is_teacher', False)
if self.training or self.is_teacher:
losses = self.fcos_head(fpn_feats, self.inputs)
return losses
else:
fcos_head_outs = self.fcos_head(fpn_feats)
bbox_pred, bbox_num = self.fcos_head.post_process(
fcos_head_outs, self.inputs['scale_factor'])
return {'bbox': bbox_pred, 'bbox_num': bbox_num}
def get_loss(self):
return self._forward()
def get_pred(self):
return self._forward()
def get_loss_keys(self):
return ['loss_cls', 'loss_box', 'loss_quality']
def get_ssod_loss(self, student_head_outs, teacher_head_outs, train_cfg):
ssod_losses = self.ssod_loss(student_head_outs, teacher_head_outs,
train_cfg)
return ssod_losses
@register
class ARSL_FCOS(BaseArch):
"""
FCOS ARSL network, see https://arxiv.org/abs/
Args:
backbone (object): backbone instance
neck (object): 'FPN' instance
fcos_head (object): 'FCOSHead_ARSL' instance
fcos_cr_loss (object): 'FCOSLossCR' instance, only used for semi-det(ssod) by ARSL
"""
__category__ = 'architecture'
__inject__ = ['fcos_cr_loss']
def __init__(self,
backbone,
neck,
fcos_head='FCOSHead_ARSL',
fcos_cr_loss='FCOSLossCR'):
super(ARSL_FCOS, self).__init__()
self.backbone = backbone
self.neck = neck
self.fcos_head = fcos_head
self.fcos_cr_loss = fcos_cr_loss
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
fcos_head = create(cfg['fcos_head'], **kwargs)
# consistency regularization loss
fcos_cr_loss = create(cfg['fcos_cr_loss'])
return {
'backbone': backbone,
'neck': neck,
'fcos_head': fcos_head,
'fcos_cr_loss': fcos_cr_loss,
}
def forward(self, inputs, branch="supervised", teacher_prediction=None):
assert branch in ['supervised', 'semi_supervised'], \
print('In ARSL, type must be supervised or semi_supervised.')
if self.data_format == 'NHWC':
image = inputs['image']
inputs['image'] = paddle.transpose(image, [0, 2, 3, 1])
self.inputs = inputs
if self.training:
if branch == "supervised":
out = self.get_loss()
else:
out = self.get_pseudo_loss(teacher_prediction)
else:
# norm test
if branch == "supervised":
out = self.get_pred()
# predict pseudo labels
else:
out = self.get_pseudo_pred()
return out
# model forward
def model_forward(self):
body_feats = self.backbone(self.inputs)
fpn_feats = self.neck(body_feats)
fcos_head_outs = self.fcos_head(fpn_feats)
return fcos_head_outs
# supervised loss for labeled data
def get_loss(self):
loss = {}
tag_labels, tag_bboxes, tag_centerness = [], [], []
for i in range(len(self.fcos_head.fpn_stride)):
# labels, reg_target, centerness
k_lbl = 'labels{}'.format(i)
if k_lbl in self.inputs:
tag_labels.append(self.inputs[k_lbl])
k_box = 'reg_target{}'.format(i)
if k_box in self.inputs:
tag_bboxes.append(self.inputs[k_box])
k_ctn = 'centerness{}'.format(i)
if k_ctn in self.inputs:
tag_centerness.append(self.inputs[k_ctn])
fcos_head_outs = self.model_forward()
loss_fcos = self.fcos_head.get_loss(fcos_head_outs, tag_labels,
tag_bboxes, tag_centerness)
loss.update(loss_fcos)
return loss
# unsupervised loss for unlabeled data
def get_pseudo_loss(self, teacher_prediction):
loss = {}
fcos_head_outs = self.model_forward()
unsup_loss = self.fcos_cr_loss(fcos_head_outs, teacher_prediction)
for k in unsup_loss.keys():
loss[k + '_pseudo'] = unsup_loss[k]
return loss
# get detection results for test, decode and rescale the results to original size
def get_pred(self):
fcos_head_outs = self.model_forward()
scale_factor = self.inputs['scale_factor']
bbox_pred, bbox_num = self.fcos_head.post_process(fcos_head_outs,
scale_factor)
output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
return output
# generate pseudo labels to guide student
def get_pseudo_pred(self):
fcos_head_outs = self.model_forward()
pred_cls, pred_loc, pred_iou = fcos_head_outs[1:] # 0 is locations
for lvl, _ in enumerate(pred_loc):
pred_loc[lvl] = pred_loc[lvl] / self.fcos_head.fpn_stride[lvl]
return [pred_cls, pred_loc, pred_iou, self.fcos_head.fpn_stride]