更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,217 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
this code is base on https://github.com/hikvision-research/opera/blob/main/opera/models/detectors/petr.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register
from .meta_arch import BaseArch
from .. import layers as L
__all__ = ['PETR']
@register
class PETR(BaseArch):
__category__ = 'architecture'
__inject__ = ['backbone', 'neck', 'bbox_head']
def __init__(self,
backbone='ResNet',
neck='ChannelMapper',
bbox_head='PETRHead'):
"""
PETR, see https://openaccess.thecvf.com/content/CVPR2022/papers/Shi_End-to-End_Multi-Person_Pose_Estimation_With_Transformers_CVPR_2022_paper.pdf
Args:
backbone (nn.Layer): backbone instance
neck (nn.Layer): neck between backbone and head
bbox_head (nn.Layer): model output and loss
"""
super(PETR, self).__init__()
self.backbone = backbone
if neck is not None:
self.with_neck = True
self.neck = neck
self.bbox_head = bbox_head
self.deploy = False
def extract_feat(self, img):
"""Directly extract features from the backbone+neck."""
x = self.backbone(img)
if self.with_neck:
x = self.neck(x)
return x
def get_inputs(self):
img_metas = []
gt_bboxes = []
gt_labels = []
gt_keypoints = []
gt_areas = []
pad_gt_mask = self.inputs['pad_gt_mask'].astype("bool").squeeze(-1)
for idx, im_shape in enumerate(self.inputs['im_shape']):
img_meta = {
'img_shape': im_shape.astype("int32").tolist() + [1, ],
'batch_input_shape': self.inputs['image'].shape[-2:],
'image_name': self.inputs['image_file'][idx]
}
img_metas.append(img_meta)
if (not pad_gt_mask[idx].any()):
gt_keypoints.append(self.inputs['gt_joints'][idx][:1])
gt_labels.append(self.inputs['gt_class'][idx][:1])
gt_bboxes.append(self.inputs['gt_bbox'][idx][:1])
gt_areas.append(self.inputs['gt_areas'][idx][:1])
continue
gt_keypoints.append(self.inputs['gt_joints'][idx][pad_gt_mask[idx]])
gt_labels.append(self.inputs['gt_class'][idx][pad_gt_mask[idx]])
gt_bboxes.append(self.inputs['gt_bbox'][idx][pad_gt_mask[idx]])
gt_areas.append(self.inputs['gt_areas'][idx][pad_gt_mask[idx]])
return img_metas, gt_bboxes, gt_labels, gt_keypoints, gt_areas
def get_loss(self):
"""
Args:
img (Tensor): Input images of shape (N, C, H, W).
Typically these should be mean centered and std scaled.
img_metas (list[dict]): A List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
:class:`mmdet.datasets.pipelines.Collect`.
gt_bboxes (list[Tensor]): Each item are the truth boxes for each
image in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): Class indices corresponding to each box.
gt_keypoints (list[Tensor]): Each item are the truth keypoints for
each image in [p^{1}_x, p^{1}_y, p^{1}_v, ..., p^{K}_x,
p^{K}_y, p^{K}_v] format.
gt_areas (list[Tensor]): mask areas corresponding to each box.
gt_bboxes_ignore (None | list[Tensor]): Specify which bounding
boxes can be ignored when computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
img_metas, gt_bboxes, gt_labels, gt_keypoints, gt_areas = self.get_inputs(
)
gt_bboxes_ignore = getattr(self.inputs, 'gt_bboxes_ignore', None)
x = self.extract_feat(self.inputs)
losses = self.bbox_head.forward_train(x, img_metas, gt_bboxes,
gt_labels, gt_keypoints, gt_areas,
gt_bboxes_ignore)
loss = 0
for k, v in losses.items():
loss += v
losses['loss'] = loss
return losses
def get_pred_numpy(self):
"""Used for computing network flops.
"""
img = self.inputs['image']
batch_size, _, height, width = img.shape
dummy_img_metas = [
dict(
batch_input_shape=(height, width),
img_shape=(height, width, 3),
scale_factor=(1., 1., 1., 1.)) for _ in range(batch_size)
]
x = self.extract_feat(img)
outs = self.bbox_head(x, img_metas=dummy_img_metas)
bbox_list = self.bbox_head.get_bboxes(
*outs, dummy_img_metas, rescale=True)
return bbox_list
def get_pred(self):
"""
"""
img = self.inputs['image']
batch_size, _, height, width = img.shape
img_metas = [
dict(
batch_input_shape=(height, width),
img_shape=(height, width, 3),
scale_factor=self.inputs['scale_factor'][i])
for i in range(batch_size)
]
kptpred = self.simple_test(
self.inputs, img_metas=img_metas, rescale=True)
keypoints = kptpred[0][1][0]
bboxs = kptpred[0][0][0]
keypoints[..., 2] = bboxs[:, None, 4]
res_lst = [[keypoints, bboxs[:, 4]]]
outputs = {'keypoint': res_lst}
return outputs
def simple_test(self, inputs, img_metas, rescale=False):
"""Test function without test time augmentation.
Args:
inputs (list[paddle.Tensor]): List of multiple images.
img_metas (list[dict]): List of image information.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[list[np.ndarray]]: BBox and keypoint results of each image
and classes. The outer list corresponds to each image.
The inner list corresponds to each class.
"""
batch_size = len(img_metas)
assert batch_size == 1, 'Currently only batch_size 1 for inference ' \
f'mode is supported. Found batch_size {batch_size}.'
feat = self.extract_feat(inputs)
results_list = self.bbox_head.simple_test(
feat, img_metas, rescale=rescale)
bbox_kpt_results = [
self.bbox_kpt2result(det_bboxes, det_labels, det_kpts,
self.bbox_head.num_classes)
for det_bboxes, det_labels, det_kpts in results_list
]
return bbox_kpt_results
def bbox_kpt2result(self, bboxes, labels, kpts, num_classes):
"""Convert detection results to a list of numpy arrays.
Args:
bboxes (paddle.Tensor | np.ndarray): shape (n, 5).
labels (paddle.Tensor | np.ndarray): shape (n, ).
kpts (paddle.Tensor | np.ndarray): shape (n, K, 3).
num_classes (int): class number, including background class.
Returns:
list(ndarray): bbox and keypoint results of each class.
"""
if bboxes.shape[0] == 0:
return [np.zeros((0, 5), dtype=np.float32) for i in range(num_classes)], \
[np.zeros((0, kpts.size(1), 3), dtype=np.float32)
for i in range(num_classes)]
else:
if isinstance(bboxes, paddle.Tensor):
bboxes = bboxes.numpy()
labels = labels.numpy()
kpts = kpts.numpy()
return [bboxes[labels == i, :] for i in range(num_classes)], \
[kpts[labels == i, :, :] for i in range(num_classes)]