更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,132 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.nn as nn
import typing
from ppdet.core.workspace import register
from ppdet.modeling.post_process import nms
__all__ = ['BaseArch']
@register
class BaseArch(nn.Layer):
def __init__(self, data_format='NCHW', use_extra_data=False):
super(BaseArch, self).__init__()
self.data_format = data_format
self.inputs = {}
self.fuse_norm = False
self.use_extra_data = use_extra_data
def load_meanstd(self, cfg_transform):
scale = 1.
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
for item in cfg_transform:
if 'NormalizeImage' in item:
mean = np.array(
item['NormalizeImage']['mean'], dtype=np.float32)
std = np.array(item['NormalizeImage']['std'], dtype=np.float32)
if item['NormalizeImage'].get('is_scale', True):
scale = 1. / 255.
break
if self.data_format == 'NHWC':
self.scale = paddle.to_tensor(scale / std).reshape((1, 1, 1, 3))
self.bias = paddle.to_tensor(-mean / std).reshape((1, 1, 1, 3))
else:
self.scale = paddle.to_tensor(scale / std).reshape((1, 3, 1, 1))
self.bias = paddle.to_tensor(-mean / std).reshape((1, 3, 1, 1))
def forward(self, inputs):
if self.data_format == 'NHWC':
image = inputs['image']
inputs['image'] = paddle.transpose(image, [0, 2, 3, 1])
if self.fuse_norm:
image = inputs['image']
self.inputs['image'] = image * self.scale + self.bias
self.inputs['im_shape'] = inputs['im_shape']
self.inputs['scale_factor'] = inputs['scale_factor']
else:
self.inputs = inputs
self.model_arch()
if self.training:
out = self.get_loss()
else:
inputs_list = []
# multi-scale input
if not isinstance(inputs, typing.Sequence):
inputs_list.append(inputs)
else:
inputs_list.extend(inputs)
outs = []
for inp in inputs_list:
if self.fuse_norm:
self.inputs['image'] = inp['image'] * self.scale + self.bias
self.inputs['im_shape'] = inp['im_shape']
self.inputs['scale_factor'] = inp['scale_factor']
else:
self.inputs = inp
outs.append(self.get_pred())
# multi-scale test
if len(outs) > 1:
out = self.merge_multi_scale_predictions(outs)
else:
out = outs[0]
return out
def merge_multi_scale_predictions(self, outs):
# default values for architectures not included in following list
num_classes = 80
nms_threshold = 0.5
keep_top_k = 100
if self.__class__.__name__ in ('CascadeRCNN', 'FasterRCNN', 'MaskRCNN'):
num_classes = self.bbox_head.num_classes
keep_top_k = self.bbox_post_process.nms.keep_top_k
nms_threshold = self.bbox_post_process.nms.nms_threshold
else:
raise Exception(
"Multi scale test only supports CascadeRCNN, FasterRCNN and MaskRCNN for now"
)
final_boxes = []
all_scale_outs = paddle.concat([o['bbox'] for o in outs]).numpy()
for c in range(num_classes):
idxs = all_scale_outs[:, 0] == c
if np.count_nonzero(idxs) == 0:
continue
r = nms(all_scale_outs[idxs, 1:], nms_threshold)
final_boxes.append(
np.concatenate([np.full((r.shape[0], 1), c), r], 1))
out = np.concatenate(final_boxes)
out = np.concatenate(sorted(
out, key=lambda e: e[1])[-keep_top_k:]).reshape((-1, 6))
out = {
'bbox': paddle.to_tensor(out),
'bbox_num': paddle.to_tensor(np.array([out.shape[0], ]))
}
return out
def build_inputs(self, data, input_def):
inputs = {}
for i, k in enumerate(input_def):
inputs[k] = data[i]
return inputs
def model_arch(self, ):
pass
def get_loss(self, ):
raise NotImplementedError("Should implement get_loss method!")
def get_pred(self, ):
raise NotImplementedError("Should implement get_pred method!")