更换文档检测模型
This commit is contained in:
114
paddle_detection/ppdet/modeling/architectures/pose3d_metro.py
Normal file
114
paddle_detection/ppdet/modeling/architectures/pose3d_metro.py
Normal file
@@ -0,0 +1,114 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from ppdet.core.workspace import register, create
|
||||
from .meta_arch import BaseArch
|
||||
from .. import layers as L
|
||||
|
||||
__all__ = ['METRO_Body']
|
||||
|
||||
|
||||
def orthographic_projection(X, camera):
|
||||
"""Perform orthographic projection of 3D points X using the camera parameters
|
||||
Args:
|
||||
X: size = [B, N, 3]
|
||||
camera: size = [B, 3]
|
||||
Returns:
|
||||
Projected 2D points -- size = [B, N, 2]
|
||||
"""
|
||||
camera = camera.reshape((-1, 1, 3))
|
||||
X_trans = X[:, :, :2] + camera[:, :, 1:]
|
||||
shape = paddle.shape(X_trans)
|
||||
X_2d = (camera[:, :, 0] * X_trans.reshape((shape[0], -1))).reshape(shape)
|
||||
return X_2d
|
||||
|
||||
|
||||
@register
|
||||
class METRO_Body(BaseArch):
|
||||
__category__ = 'architecture'
|
||||
__inject__ = ['loss']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_joints,
|
||||
backbone='HRNet',
|
||||
trans_encoder='',
|
||||
loss='Pose3DLoss', ):
|
||||
"""
|
||||
Modified from METRO network, see https://arxiv.org/abs/2012.09760
|
||||
|
||||
Args:
|
||||
backbone (nn.Layer): backbone instance
|
||||
"""
|
||||
super(METRO_Body, self).__init__()
|
||||
self.num_joints = num_joints
|
||||
self.backbone = backbone
|
||||
self.loss = loss
|
||||
self.deploy = False
|
||||
|
||||
self.trans_encoder = trans_encoder
|
||||
self.conv_learn_tokens = paddle.nn.Conv1D(49, num_joints + 10, 1)
|
||||
self.cam_param_fc = paddle.nn.Linear(3, 2)
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg, *args, **kwargs):
|
||||
# backbone
|
||||
backbone = create(cfg['backbone'])
|
||||
trans_encoder = create(cfg['trans_encoder'])
|
||||
|
||||
return {'backbone': backbone, 'trans_encoder': trans_encoder}
|
||||
|
||||
def _forward(self):
|
||||
batch_size = self.inputs['image'].shape[0]
|
||||
|
||||
image_feat = self.backbone(self.inputs)
|
||||
image_feat_flatten = image_feat.reshape((batch_size, 2048, 49))
|
||||
image_feat_flatten = image_feat_flatten.transpose(perm=(0, 2, 1))
|
||||
# and apply a conv layer to learn image token for each 3d joint/vertex position
|
||||
features = self.conv_learn_tokens(image_feat_flatten) # (B, J, C)
|
||||
|
||||
if self.training:
|
||||
# apply mask vertex/joint modeling
|
||||
# meta_masks is a tensor of all the masks, randomly generated in dataloader
|
||||
# we pre-define a [MASK] token, which is a floating-value vector with 0.01s
|
||||
meta_masks = self.inputs['mjm_mask'].expand((-1, -1, 2048))
|
||||
constant_tensor = paddle.ones_like(features) * 0.01
|
||||
features = features * meta_masks + constant_tensor * (1 - meta_masks
|
||||
)
|
||||
pred_out = self.trans_encoder(features)
|
||||
|
||||
pred_3d_joints = pred_out[:, :self.num_joints, :]
|
||||
cam_features = pred_out[:, self.num_joints:, :]
|
||||
|
||||
# learn camera parameters
|
||||
pred_2d_joints = self.cam_param_fc(cam_features)
|
||||
return pred_3d_joints, pred_2d_joints
|
||||
|
||||
def get_loss(self):
|
||||
preds_3d, preds_2d = self._forward()
|
||||
loss = self.loss(preds_3d, preds_2d, self.inputs)
|
||||
output = {'loss': loss}
|
||||
return output
|
||||
|
||||
def get_pred(self):
|
||||
preds_3d, preds_2d = self._forward()
|
||||
outputs = {'pose3d': preds_3d, 'pose2d': preds_2d}
|
||||
return outputs
|
||||
Reference in New Issue
Block a user