更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,114 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
from .. import layers as L
__all__ = ['METRO_Body']
def orthographic_projection(X, camera):
"""Perform orthographic projection of 3D points X using the camera parameters
Args:
X: size = [B, N, 3]
camera: size = [B, 3]
Returns:
Projected 2D points -- size = [B, N, 2]
"""
camera = camera.reshape((-1, 1, 3))
X_trans = X[:, :, :2] + camera[:, :, 1:]
shape = paddle.shape(X_trans)
X_2d = (camera[:, :, 0] * X_trans.reshape((shape[0], -1))).reshape(shape)
return X_2d
@register
class METRO_Body(BaseArch):
__category__ = 'architecture'
__inject__ = ['loss']
def __init__(
self,
num_joints,
backbone='HRNet',
trans_encoder='',
loss='Pose3DLoss', ):
"""
Modified from METRO network, see https://arxiv.org/abs/2012.09760
Args:
backbone (nn.Layer): backbone instance
"""
super(METRO_Body, self).__init__()
self.num_joints = num_joints
self.backbone = backbone
self.loss = loss
self.deploy = False
self.trans_encoder = trans_encoder
self.conv_learn_tokens = paddle.nn.Conv1D(49, num_joints + 10, 1)
self.cam_param_fc = paddle.nn.Linear(3, 2)
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
trans_encoder = create(cfg['trans_encoder'])
return {'backbone': backbone, 'trans_encoder': trans_encoder}
def _forward(self):
batch_size = self.inputs['image'].shape[0]
image_feat = self.backbone(self.inputs)
image_feat_flatten = image_feat.reshape((batch_size, 2048, 49))
image_feat_flatten = image_feat_flatten.transpose(perm=(0, 2, 1))
# and apply a conv layer to learn image token for each 3d joint/vertex position
features = self.conv_learn_tokens(image_feat_flatten) # (B, J, C)
if self.training:
# apply mask vertex/joint modeling
# meta_masks is a tensor of all the masks, randomly generated in dataloader
# we pre-define a [MASK] token, which is a floating-value vector with 0.01s
meta_masks = self.inputs['mjm_mask'].expand((-1, -1, 2048))
constant_tensor = paddle.ones_like(features) * 0.01
features = features * meta_masks + constant_tensor * (1 - meta_masks
)
pred_out = self.trans_encoder(features)
pred_3d_joints = pred_out[:, :self.num_joints, :]
cam_features = pred_out[:, self.num_joints:, :]
# learn camera parameters
pred_2d_joints = self.cam_param_fc(cam_features)
return pred_3d_joints, pred_2d_joints
def get_loss(self):
preds_3d, preds_2d = self._forward()
loss = self.loss(preds_3d, preds_2d, self.inputs)
output = {'loss': loss}
return output
def get_pred(self):
preds_3d, preds_2d = self._forward()
outputs = {'pose3d': preds_3d, 'pose2d': preds_2d}
return outputs