更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,260 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['PPYOLOE', 'PPYOLOEWithAuxHead']
# PP-YOLOE and PP-YOLOE+ are recommended to use this architecture, especially when use distillation or aux head
# PP-YOLOE and PP-YOLOE+ can also use the same architecture of YOLOv3 in yolo.py when not use distillation or aux head
@register
class PPYOLOE(BaseArch):
"""
PPYOLOE network, see https://arxiv.org/abs/2203.16250
Args:
backbone (nn.Layer): backbone instance
neck (nn.Layer): neck instance
yolo_head (nn.Layer): anchor_head instance
post_process (object): `BBoxPostProcess` instance
ssod_loss (object): 'SSODPPYOLOELoss' instance, only used for semi-det(ssod)
for_distill (bool): whether for distillation
feat_distill_place (str): distill which feature for distillation
for_mot (bool): whether return other features for multi-object tracking
models, default False in pure object detection models.
"""
__category__ = 'architecture'
__shared__ = ['for_distill']
__inject__ = ['post_process', 'ssod_loss']
def __init__(self,
backbone='CSPResNet',
neck='CustomCSPPAN',
yolo_head='PPYOLOEHead',
post_process='BBoxPostProcess',
ssod_loss='SSODPPYOLOELoss',
for_distill=False,
feat_distill_place='neck_feats',
for_mot=False):
super(PPYOLOE, self).__init__()
self.backbone = backbone
self.neck = neck
self.yolo_head = yolo_head
self.post_process = post_process
self.for_mot = for_mot
# for ssod, semi-det
self.is_teacher = False
self.ssod_loss = ssod_loss
# distill
self.for_distill = for_distill
self.feat_distill_place = feat_distill_place
if for_distill:
assert feat_distill_place in ['backbone_feats', 'neck_feats']
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
yolo_head = create(cfg['yolo_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"yolo_head": yolo_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
neck_feats = self.neck(body_feats, self.for_mot)
self.is_teacher = self.inputs.get('is_teacher', False) # for semi-det
if self.training or self.is_teacher:
yolo_losses = self.yolo_head(neck_feats, self.inputs)
if self.for_distill:
if self.feat_distill_place == 'backbone_feats':
self.yolo_head.distill_pairs['backbone_feats'] = body_feats
elif self.feat_distill_place == 'neck_feats':
self.yolo_head.distill_pairs['neck_feats'] = neck_feats
else:
raise ValueError
return yolo_losses
else:
yolo_head_outs = self.yolo_head(neck_feats)
if self.post_process is not None:
bbox, bbox_num, nms_keep_idx = self.post_process(
yolo_head_outs, self.yolo_head.mask_anchors,
self.inputs['im_shape'], self.inputs['scale_factor'])
else:
bbox, bbox_num, nms_keep_idx = self.yolo_head.post_process(
yolo_head_outs, self.inputs['scale_factor'])
if self.use_extra_data:
extra_data = {} # record the bbox output before nms, such like scores and nms_keep_idx
"""extra_data:{
'scores': predict scores,
'nms_keep_idx': bbox index before nms,
}
"""
extra_data['scores'] = yolo_head_outs[0] # predict scores (probability)
extra_data['nms_keep_idx'] = nms_keep_idx
output = {'bbox': bbox, 'bbox_num': bbox_num, 'extra_data': extra_data}
else:
output = {'bbox': bbox, 'bbox_num': bbox_num}
return output
def get_loss(self):
return self._forward()
def get_pred(self):
return self._forward()
def get_loss_keys(self):
return ['loss_cls', 'loss_iou', 'loss_dfl', 'loss_contrast']
def get_ssod_loss(self, student_head_outs, teacher_head_outs, train_cfg):
ssod_losses = self.ssod_loss(student_head_outs, teacher_head_outs,
train_cfg)
return ssod_losses
@register
class PPYOLOEWithAuxHead(BaseArch):
__category__ = 'architecture'
__inject__ = ['post_process']
def __init__(self,
backbone='CSPResNet',
neck='CustomCSPPAN',
yolo_head='PPYOLOEHead',
aux_head='SimpleConvHead',
post_process='BBoxPostProcess',
for_mot=False,
detach_epoch=5):
"""
PPYOLOE network, see https://arxiv.org/abs/2203.16250
Args:
backbone (nn.Layer): backbone instance
neck (nn.Layer): neck instance
yolo_head (nn.Layer): anchor_head instance
post_process (object): `BBoxPostProcess` instance
for_mot (bool): whether return other features for multi-object tracking
models, default False in pure object detection models.
"""
super(PPYOLOEWithAuxHead, self).__init__()
self.backbone = backbone
self.neck = neck
self.aux_neck = copy.deepcopy(self.neck)
self.yolo_head = yolo_head
self.aux_head = aux_head
self.post_process = post_process
self.for_mot = for_mot
self.detach_epoch = detach_epoch
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
# fpn
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
aux_neck = copy.deepcopy(neck)
# head
kwargs = {'input_shape': neck.out_shape}
yolo_head = create(cfg['yolo_head'], **kwargs)
aux_head = create(cfg['aux_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"yolo_head": yolo_head,
'aux_head': aux_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
neck_feats = self.neck(body_feats, self.for_mot)
if self.training:
if self.inputs['epoch_id'] >= self.detach_epoch:
aux_neck_feats = self.aux_neck([f.detach() for f in body_feats])
dual_neck_feats = (paddle.concat(
[f.detach(), aux_f], axis=1) for f, aux_f in
zip(neck_feats, aux_neck_feats))
else:
aux_neck_feats = self.aux_neck(body_feats)
dual_neck_feats = (paddle.concat(
[f, aux_f], axis=1) for f, aux_f in
zip(neck_feats, aux_neck_feats))
aux_cls_scores, aux_bbox_preds = self.aux_head(dual_neck_feats)
loss = self.yolo_head(
neck_feats,
self.inputs,
aux_pred=[aux_cls_scores, aux_bbox_preds])
return loss
else:
yolo_head_outs = self.yolo_head(neck_feats)
if self.post_process is not None:
bbox, bbox_num, nms_keep_idx = self.post_process(
yolo_head_outs, self.yolo_head.mask_anchors,
self.inputs['im_shape'], self.inputs['scale_factor'])
else:
bbox, bbox_num, nms_keep_idx = self.yolo_head.post_process(
yolo_head_outs, self.inputs['scale_factor'])
if self.use_extra_data:
extra_data = {} # record the bbox output before nms, such like scores and nms_keep_idx
"""extra_data:{
'scores': predict scores,
'nms_keep_idx': bbox index before nms,
}
"""
extra_data['scores'] = yolo_head_outs[0] # predict scores (probability)
# Todo: get logits output
extra_data['nms_keep_idx'] = nms_keep_idx
output = {'bbox': bbox, 'bbox_num': bbox_num, 'extra_data': extra_data}
else:
output = {'bbox': bbox, 'bbox_num': bbox_num}
return output
def get_loss(self):
return self._forward()
def get_pred(self):
return self._forward()