更换文档检测模型
This commit is contained in:
99
paddle_detection/ppdet/modeling/architectures/sparse_rcnn.py
Normal file
99
paddle_detection/ppdet/modeling/architectures/sparse_rcnn.py
Normal file
@@ -0,0 +1,99 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from ppdet.core.workspace import register, create
|
||||
from .meta_arch import BaseArch
|
||||
|
||||
__all__ = ["SparseRCNN"]
|
||||
|
||||
|
||||
@register
|
||||
class SparseRCNN(BaseArch):
|
||||
__category__ = 'architecture'
|
||||
__inject__ = ["postprocess"]
|
||||
|
||||
def __init__(self,
|
||||
backbone,
|
||||
neck,
|
||||
head="SparsercnnHead",
|
||||
postprocess="SparsePostProcess"):
|
||||
super(SparseRCNN, self).__init__()
|
||||
self.backbone = backbone
|
||||
self.neck = neck
|
||||
self.head = head
|
||||
self.postprocess = postprocess
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg, *args, **kwargs):
|
||||
backbone = create(cfg['backbone'])
|
||||
|
||||
kwargs = {'input_shape': backbone.out_shape}
|
||||
neck = create(cfg['neck'], **kwargs)
|
||||
|
||||
kwargs = {'roi_input_shape': neck.out_shape}
|
||||
head = create(cfg['head'], **kwargs)
|
||||
|
||||
return {
|
||||
'backbone': backbone,
|
||||
'neck': neck,
|
||||
"head": head,
|
||||
}
|
||||
|
||||
def _forward(self):
|
||||
body_feats = self.backbone(self.inputs)
|
||||
fpn_feats = self.neck(body_feats)
|
||||
head_outs = self.head(fpn_feats, self.inputs["img_whwh"])
|
||||
|
||||
if not self.training:
|
||||
bbox_pred, bbox_num = self.postprocess(
|
||||
head_outs["pred_logits"], head_outs["pred_boxes"],
|
||||
self.inputs["scale_factor_whwh"], self.inputs["ori_shape"])
|
||||
return bbox_pred, bbox_num
|
||||
else:
|
||||
return head_outs
|
||||
|
||||
def get_loss(self):
|
||||
batch_gt_class = self.inputs["gt_class"]
|
||||
batch_gt_box = self.inputs["gt_bbox"]
|
||||
batch_whwh = self.inputs["img_whwh"]
|
||||
targets = []
|
||||
|
||||
for i in range(len(batch_gt_class)):
|
||||
boxes = batch_gt_box[i]
|
||||
labels = batch_gt_class[i].squeeze(-1)
|
||||
img_whwh = batch_whwh[i]
|
||||
img_whwh_tgt = img_whwh.unsqueeze(0).tile([int(boxes.shape[0]), 1])
|
||||
targets.append({
|
||||
"boxes": boxes,
|
||||
"labels": labels,
|
||||
"img_whwh": img_whwh,
|
||||
"img_whwh_tgt": img_whwh_tgt
|
||||
})
|
||||
|
||||
outputs = self._forward()
|
||||
loss_dict = self.head.get_loss(outputs, targets)
|
||||
acc = loss_dict["acc"]
|
||||
loss_dict.pop("acc")
|
||||
total_loss = sum(loss_dict.values())
|
||||
loss_dict.update({"loss": total_loss, "acc": acc})
|
||||
return loss_dict
|
||||
|
||||
def get_pred(self):
|
||||
bbox_pred, bbox_num = self._forward()
|
||||
output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
|
||||
return output
|
||||
Reference in New Issue
Block a user