更换文档检测模型

This commit is contained in:
2024-08-27 14:42:45 +08:00
parent aea6f19951
commit 1514e09c40
2072 changed files with 254336 additions and 4967 deletions

View File

@@ -0,0 +1,88 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['YOLOF']
@register
class YOLOF(BaseArch):
__category__ = 'architecture'
def __init__(self,
backbone='ResNet',
neck='DilatedEncoder',
head='YOLOFHead',
for_mot=False):
"""
YOLOF network, see https://arxiv.org/abs/2103.09460
Args:
backbone (nn.Layer): backbone instance
neck (nn.Layer): DilatedEncoder instance
head (nn.Layer): YOLOFHead instance
for_mot (bool): whether return other features for multi-object tracking
models, default False in pure object detection models.
"""
super(YOLOF, self).__init__()
self.backbone = backbone
self.neck = neck
self.head = head
self.for_mot = for_mot
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
# fpn
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
# head
kwargs = {'input_shape': neck.out_shape}
head = create(cfg['head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"head": head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
neck_feats = self.neck(body_feats, self.for_mot)
if self.training:
yolo_losses = self.head(neck_feats, self.inputs)
return yolo_losses
else:
yolo_head_outs = self.head(neck_feats)
bbox, bbox_num = self.head.post_process(yolo_head_outs,
self.inputs['im_shape'],
self.inputs['scale_factor'])
output = {'bbox': bbox, 'bbox_num': bbox_num}
return output
def get_loss(self):
return self._forward()
def get_pred(self):
return self._forward()